1
|
Ma Y, Kang X, Wang G, Luo S, Luo X, Wang G. Inhibition of Staphylococcus aureus biofilm by quercetin combined with antibiotics. BIOFOULING 2024; 40:996-1011. [PMID: 39639551 DOI: 10.1080/08927014.2024.2435027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
This study aimed to investigate the effects of combined quercetin and antibiotics on the bacteriostatic activity and biofilm formation of Staphylococcus aureus. Optimal concentrations of quercetin and antibiotics (tetracycline and doxycycline) for inhibiting biofilm formation were determined using the Fractional Inhibitory Concentration Index and Minimum Biofilm Inhibitory Concentration assays. The impact of the drug combinations on biofilm clearance at various formation stages was determined using crystal violet staining, scanning electron microscopy and confocal laser microscopy. The results indicated that quercetin enhanced the bactericidal effect of tetracycline antibiotics against S. aureus. The combination significantly reduced both the metabolic activity within S. aureus biofilms and the production of biofilm matrix components. Scanning electron microscopy and confocal laser microscopy confirmed that the combination treatment significantly reduced bacterial cell counts within the biofilm. Quercetin treatment significantly increased the sensitivity of biofilms to antibiotics, supporting its potential application as a novel antibiotic synergist.
Collapse
Affiliation(s)
- Yanjun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xinyun Kang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Guiqin Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Shuangyan Luo
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xiaofeng Luo
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Guilai Wang
- Yinchuan Hospital of Traditional Chinese Medicine, Yinchuan, China
| |
Collapse
|
2
|
Yuan Y, Jiang X, Li W, Chang C, Wu J. A protectant for Lactobacillus rhamnosus based on whey protein isolate and isomalt: Stress resistance and underlying mechanisms. Int J Biol Macromol 2024; 280:135712. [PMID: 39288859 DOI: 10.1016/j.ijbiomac.2024.135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Probiotics are exposed to a variety of abiotic and biotic stresses during food fermentation and production, such as acidity, heat, osmolality, and oxidation, which affect their metabolic activity and efficiency. Therefore, it is essential to develop new protective agents to maintain the activity and stability of probiotics. This study introduces a new protectant, spray-dried whey protein isolate (WPI) and isomaltose (ISO). We evaluated the effects of four WPI-ISO ratios (1:0, 2:1, 1:1, 1:2) on the physical properties, including moisture content, water activity (aw), wettability, and glass transition temperature. In addition, we evaluated the environmental tolerance of Lactobacillus rhamnosus to different WPI-ISO ratios under thermal, storage, and simulated gastrointestinal conditions. The results showed that the moisture content (< 7 %) and water activity (< 0.3) of the protectant and probiotic powders met storage stability requirements. The moisture content, water activity, wettability index (WI), and glass transition temperature decreased significantly with the addition of isomalt, thereby improving the pressure resistance of L. rhamnosus through the synergistic effect of WPI and ISO. The WPI-ISO protectant not only improved the environmental tolerance and wettability of probiotics by reducing the moisture content and water activity but also significantly improved the survival rate of L. rhamnosus under various stress conditions such as high temperature and gastrointestinal environment. L. rhamnosus maintains good activity with a viable bacterial count of over 9 lg CFU/g after 90 days of storage, demonstrating effective protection against the environment stress. This study provides a promising new strategy to improve the stability of probiotics in the food industry.
Collapse
Affiliation(s)
- Yanghua Yuan
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanbing Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
3
|
Sun S, Chen X. Mechanism-guided strategies for combating antibiotic resistance. World J Microbiol Biotechnol 2024; 40:295. [PMID: 39122871 DOI: 10.1007/s11274-024-04106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Bacterial antibiotic resistance has been recognized as a global threat to public health. It challenges the antibiotics currently used in clinical practice and causes severe and often fatal infectious diseases. Fighting against antibiotic-resistant bacteria (ARB) is growing more urgent. While understanding the molecular mechanisms that underlie resistance is a prerequisite, several major mechanisms have been previously proposed including bacterial efflux systems, reduced cell membrane permeability, antibiotic inactivation by enzymes, target modification, and target protection. In this context, this review presents a panel of promising and potential strategies to combat antibiotic resistance/resistant bacteria. Different types of direct-acting and indirect resistance breakers, such as efflux pump inhibitors, antibiotic adjuvants, and oxidative treatments are discussed. In addition, the emerging multi-omics approaches for rapid resistance identification and promising alternatives to existing antibiotics are highlighted. Overall, this review suggests that continued effort and investment in research are required to develop new antibiotics and alternatives to existing antibiotics and translate them into environmental and clinical applications.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xueyingzi Chen
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
4
|
Mohammad Hanifeh N, Keyvani-Ghamsari S, Khorsandi K, Mahmoodi Khaledi E. Effect of gallium nitrate on the antibacterial activity of vancomycin in methicillin-sensitive and resistant Staphylococcus aureus. Arch Microbiol 2024; 206:304. [PMID: 38878097 DOI: 10.1007/s00203-024-04028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024]
Abstract
The extension of multidrug-resistant strains of Staphylococcus aureus (S. aureus) is one of the main health challenges in the world, which requires serious solutions to deal with it. Combination therapies using conventional antibiotics and new antibacterial compounds that target different bacterial pathways are effective methods against resistant bacterial infections. Gallium is an iron-like metal that competes with iron for uptake into bacteria and has the potential to disrupt iron-dependent vital processes in bacteria. In this study, we explored the antibacterial effects of gallium nitrate (Ga(NO3)3) and vancomycin alone and in combination with each other on methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) using microdilution assay and checkerboard test, respectively. Then, their effect on the formation and destruction of biofilms was investigated. Finally, the amount of ROS production in the presence of these two compounds in bacteria was evaluated. The results indicated that the vancomycin/ Ga(NO3)3 combination reduced the MIC of vancomycin in the MRSA strain and had an additive effect on it. Vancomycin plus Ga(NO3)3 reduced the formation of biofilms and increased the destruction of biofilms formed in both strains, especially in the MRSA strain. ROS production was also higher in the combination of vancomycin with Ga(NO3)3 compared to vancomycin alone, especially in MRSA. Therefore, our results showed that Ga(NO3)3 enhances the antibacterial activity of vancomycin and this combination therapy can be considered as a new strategy for the treatment of MRSA infections.
Collapse
Affiliation(s)
| | | | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Elahe Mahmoodi Khaledi
- Department of Cell and Molecular Biology, School of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
5
|
Jeong JY, Hwang YJ. Natural Phytochemical and Visible Light at Different Wavelengths Show Synergistic Antibacterial Activity against Staphylococcus aureus. Pharmaceutics 2024; 16:612. [PMID: 38794274 PMCID: PMC11125442 DOI: 10.3390/pharmaceutics16050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
As the risk of antibiotic-resistant bacteria increases, interest in non-antibiotic treatment is also increasing. Among the methods used in non-antibiotic therapy, natural antibiotics such as essential oils have disadvantages such as low efficiency. In the case of phototherapy, the light used for antibacterial activities has low penetration into the human body because of its short wavelength, making it of low medical utility. To solve this problem, this study aimed to determine conditions for enhancing the antibacterial activity of natural phytochemicals and visible light. Four natural phytochemical extracts that showed high antibacterial properties in previous studies were analyzed. Synergistic effects on antibacterial activity and cytotoxicity were determined when natural phytochemical extracts and visible light were simultaneously used. As a result, it was confirmed that the antibacterial activity increased by four times when Sanguisorba officinalis L. was irradiated with 465 nm for 10 min and 520 nm for 40 min, and Uncaria gambir Roxb. was irradiated with 465 nm for 10 min and 520 nm for 60 min compared to when Sanguisorba officinalis L. and Uncaria gambir Roxb. were used alone. The synergistic effect on antibacterial activity was independent of the absorption peak of the natural phytochemical extracts. In addition, in the case of natural phytochemical extracts with improved antibacterial activity, it was confirmed that the improvement of antibacterial activity was increased in inverse proportion to the light irradiation wavelength and in proportion to the light irradiation time. The antibacterial activity was enhanced regardless of antibiotic resistance. In the case of cytotoxicity, it was confirmed that there was no toxicity to A549 cells when treated with 465 nm, the shortest wavelength among the natural phytochemical extracts. These results show how to replace blue light, which has been underutilized due to its low transmittance and cytotoxicity. They also demonstrate the high medical potential of using natural phytochemical and visible light as a combination therapy.
Collapse
Affiliation(s)
- Jae-Young Jeong
- Department of Biohealth & Medical Engineering, College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea;
| | - You-Jin Hwang
- Department of Biohealth & Medical Engineering, College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Jin Y, Lin J, Shi H, Jin Y, Cao Q, Chen Y, Zou Y, Tang Y, Li Q. The active ingredients in Chinese peony pods synergize with antibiotics to inhibit MRSA growth and biofilm formation. Microbiol Res 2024; 281:127625. [PMID: 38280369 DOI: 10.1016/j.micres.2024.127625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Staphylococcus aureus (S. aureus) is a zoonotic pathogen that infects both humans and animals. The rapid spread of methicillin-resistant S. aureus (MRSA) and its resistance to antibiotics, along with its ability to form biofilms, poses a serious challenge to the clinical application of traditional antibiotics. Peony (Paeonia lactiflora Pall.) is a traditional Chinese medicine with multiple pharmacological effects. This study observed the strong antibacterial and antibiofilm activity of the water extract (WE) and ethyl acetate extract (EA) of Chinese peony pods against MRSA. The combination of EA and vancomycin, cefotaxime, penicillin G or methicillin showed a synergistic or additive antibacterial and antibiofilm effects on MRSA, which is closely related to the interaction of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PG) and methyl gallate (MG). The active ingredients in peony pods have been found to increase the sensitivity of MRSA to antibiotics and demonstrate antibiofilm activity, which is mainly related to the down-regulation of global regulatory factors sarA and sigB, extracellular PIA and eDNA encoding genes icaA and cdiA, quorum sensing related genes agrA, luxS, rnaIII, hld, biofilm virulence genes psma and sspA, and genes encoding clotting factors coa and vwb, but is not related to genes that inhibit cell wall anchoring. In vivo test showed that both WE and EA were non-toxic and significantly prolonged the lifespan of G. mellonella larvae infected with MRSA. This study provides a theoretical basis for further exploration of the combined use of PG, MG and antibiotics to combat MRSA infections.
Collapse
Affiliation(s)
- Yingshan Jin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianxing Lin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009
| | - Haiqing Shi
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009
| | - Yinzhe Jin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qingchao Cao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009
| | - Yuting Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009
| | - Yihong Zou
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009
| | - Yuanyue Tang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China.
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Jeong JY, Jung IG, Yum SH, Hwang YJ. In Vitro Synergistic Inhibitory Effects of Plant Extract Combinations on Bacterial Growth of Methicillin-Resistant Staphylococcus aureus. Pharmaceuticals (Basel) 2023; 16:1491. [PMID: 37895962 PMCID: PMC10610001 DOI: 10.3390/ph16101491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common pathogens of healthcare-associated infections. Medicinal plants have long been used in the traditional treatment of diseases or syndromes worldwide. Combined use of plant extracts could improve the effectiveness of pharmacological action by obtaining synergism, acting on multiple targets simultaneously, reducing the doses of individual components, and minimizing side effects. We aimed to investigate the synergistic inhibitory effects of selected medicinal plants (Caesalpinia sappan L. (CS), Glycyrrhiza uralensis Fisch. (GU), Sanguisorba officinalis L. (SO), and Uncaria gambir Roxb. (UG)) on the bacterial growth of MRSA and its clinical isolates. SO and UG extracts generated the best synergistic interaction as adjudged by checkerboard synergy assays. MICs of the individual extracts decreased 4-fold from 250 to 62.5 μg/mL, respectively. The SO + UG combination was further evaluated for its effects on bacterial growth inhibition, minimum bactericidal/inhibitory concentration (MBC/MIC) ratio, and time-kill kinetics. The results indicate that the SO + UG combination synergistically inhibited the bacterial growth of MRSA strains with bactericidal effects. SO + UG combination also exhibited more potent effects against clinical isolates. In multistep resistance selection experiments, both standard and isolates of MRSA showed no resistance to the SO + UG combination even after repeated exposure over fourteen passages. Our data suggest that using plant extract combinations could be a potential strategy to treat MRSA infections.
Collapse
Affiliation(s)
- Jae-Young Jeong
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - In-Geun Jung
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - Seung-Hoon Yum
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - You-Jin Hwang
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
8
|
Zhao W, Guo W, Sun P, Yang Y, Ning Y, Liu R, Xu Y, Li S, Shang L. Bedside nurses' antimicrobial stewardship practice scope and competencies in acute hospital settings: A scoping review. J Clin Nurs 2023; 32:6061-6088. [PMID: 37186422 DOI: 10.1111/jocn.16731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
AIM To identify and map bedside nurses' practice scope and competencies regarding antimicrobial stewardship in acute hospital settings, and develop a competency framework for them. BACKGROUND Antimicrobial stewardship requires multidisciplinary engagement including nursing. However, bedside nurses' antimicrobial stewardship practice scope and competencies in acute hospital settings remain unclear. DESIGN Scoping review. METHODS Using a five-stage framework proposed by Arksey and O'Malley and following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews guidelines. RESULTS A total of 1422 records were retrieved, and 41 studies were included. In addition to the six practices recommended, this review summarized bedside nurses' contributions to five additional fields as well. Correspondingly, the competencies required by bedside nurses were summarized into eight domains: specialized knowledge, safety medication administration, leadership, education, diagnostic stewardship, infection prevention and control, professional development and professional quality. CONCLUSION Nurses' practice scope overlaps greatly with routine nursing practice in antimicrobial stewardship, confirming the evidence that nurses are ideal partners in antimicrobial stewardship. This review developed a competency framework at both basic and advanced levels. Among them, professional knowledge is the foundation, while professional quality motivates nurses to participate. In addition to competency assessment, it can also be used for training and human resource deployment based on seniority or professional level. This could bridge the knowledge gap and improve the engagement of nurses in heavy workload situations. RELEVANCE TO CLINICAL PRACTICE This practice scope will provide opportunities for nurses to engage in antimicrobial stewardship. Moreover, nursing competencies identified in this field could facilitate the development of competency-based education interventions, talent assessments, training and recruitment programs. DATA RESOURCES PubMed, EMBASE, Web of Science, CINHAL, PsycINFO, Cochrane Library, ProQuest and Scopus were searched from inception to November 2022, with an updated search in March 2023. IMPACT This scoping review provides evidence for best nursing practice scope and competency in antimicrobial stewardship in hospitals. However, it is also in line with the commitment of all nurses in the global community to combat antimicrobial resistance, which has become a global threat. An antimicrobial stewardship competency framework for bedside nurses was developed at both the basic and advanced levels. It would facilitate talent assessment, training, recruitment and human resource management by guiding the development of competency-based education interventions. PATIENT OR PUBLIC CONTRIBUTION No Patient or Public Contribution.
Collapse
Affiliation(s)
- Wenting Zhao
- Nursing College, Shanxi Medical University, Taiyuan, China
- Department of Infection Management, The First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Nursing, Changzhi Medical College, Changzhi, China
| | - Wei Guo
- Nursing College, Shanxi Medical University, Taiyuan, China
| | - Pei Sun
- Nursing College, Shanxi Medical University, Taiyuan, China
| | - Yuanhui Yang
- Nursing College, Shanxi Medical University, Taiyuan, China
| | - Yan Ning
- Nursing College, Shanxi Medical University, Taiyuan, China
| | - Ru Liu
- Nursing College, Shanxi Medical University, Taiyuan, China
| | - Yufei Xu
- Nursing College, Shanxi Medical University, Taiyuan, China
| | - Shuhua Li
- Nursing College, Shanxi Medical University, Taiyuan, China
| | - Linping Shang
- Department of Infection Management, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Bhattacharjee B, Basak M, Das G, Ramesh A. Quinoxaline-based membrane-targeting therapeutic material: Implications in rejuvenating antibiotic and curb MRSA invasion in an in vitro bone cell infection model. BIOMATERIALS ADVANCES 2023; 148:213359. [PMID: 36963341 DOI: 10.1016/j.bioadv.2023.213359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Manifestation of resistance in methicillin-resistant Staphylococcus aureus (MRSA) against multiple antibiotics demands an effective strategy to counter the menace of the pathogen. To address this challenge, the current study explores quinoxaline-based synthetic ligands as an adjuvant material to target MRSA in a combination therapy regimen. Amongst the tested ligands (C1-C4), only C2 was bactericidal against the MRSA strain S. aureus 4 s, with a minimum inhibitory concentration (MIC) of 32 μM. C2 displayed a membrane-directed activity and could effectively hinder MRSA biofilm formation. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that C2 downregulated expression of the regulator gene agrC and reduced the fold change in the expression of adhesin genes fnbA and cnbA in MRSA in a dose-dependent manner. C2 enabled a 4-fold reduction in the MIC of ciprofloxacin (CPX) and in presence of 10 μM C2 and 8.0 μM CPX, growth of MRSA was arrested. Furthermore, a combination of 10 μM C2 and 12 μM CPX could strongly inhibit MRSA biofilm formation and reduce biofilm metabolic activity. The minimum biofilm inhibitory concentration (MBIC) of CPX against S. aureus 4 s biofilm was reduced and a synergy resulted between C2 and CPX. In a combinatorial treatment regimen, C2 could prevent emergence of CPX resistance and arrest growth of MRSA till 360 generations. C2 could also be leveraged in combination treatment (12 μM CPX and 10 μM C2) to target MRSA in an in vitro bone cell infection model, wherein MRSA cell adhesion and invasion onto cultured MG-63 cells was only ~17 % and ~ 0.37 %, respectively. The combinatorial treatment regimen was also biocompatible as the viability of MG-63 cells was high (~ 91 %). Thus, C2 is a promising adjuvant material to counter antibiotic-refractory therapy and mitigate MRSA-mediated bone cell infection.
Collapse
Affiliation(s)
- Basu Bhattacharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Megha Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
10
|
Wei C, Cui P, Liu X. Antibacterial Activity and Mechanism of Madecassic Acid against Staphylococcus aureus. Molecules 2023; 28:1895. [PMID: 36838882 PMCID: PMC9967526 DOI: 10.3390/molecules28041895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Antibacterial resistance has become one of the most serious problems threating global health. To overcome this urgent problem, many scientists have paid great attention to developing new antibacterial drugs from natural products. Hence, for exploring new antibacterial drugs from Chinese medicine, a series of experiments were carried out for verifying and elucidating the antibacterial activity and mechanisms of madecassic acid (MA), which is an active triterpenoid compound isolated from the traditional Chinese medicine, Centella asiatica. The antibacterial activity was investigated through measuring the diameter of the inhibition zone, the minimum inhibitory concentration (MIC), the growth curve, and the effect on the bacterial biofilm, respectively. Meanwhile, the antibacterial mechanism was also discussed from the aspects of cell wall integrity variation, cell membrane permeability, and the activities of related enzymes in the respiratory metabolic pathway before and after the intervention by MA. The results showed that MA had an inhibitory effect on eight kinds of pathogenic bacteria, and the MIC values for Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Bacillus megaterium were 31.25, 62.5, 250, 125, 62.5, and 62.5 µg/mL, respectively. For instance, 31.25 µg/mL MA could inhibit the growth of Staphylococcus aureus within 28 h. The antibacterial mechanism experiments confirmed that MA could destroy the integrity of the cell membrane and cell wall of Staphylococcus aureus, causing the leakage of macromolecular substances, inhibiting the synthesis of soluble proteins, reducing the activities of succinate dehydrogenase and malate dehydrogenase, and interacting with DNA, leading to the relaxation and ring opening of supercoiled DNA. Besides, the activities of DNA topoisomerase I and II were both inhibited by MA, which led to the cell growth of Staphylococcus aureus being repressed. This study provides a theoretical basis and reference for the application of MA in the control and inhibition of food-borne Staphylococcus aureus.
Collapse
Affiliation(s)
- Chunling Wei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Research Lab of TCM Property & Efficacy, Level 3, National Administration of TCM, Changsha 410208, China
- Mycomedicine Research Lab, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Peiwu Cui
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Research Lab of TCM Property & Efficacy, Level 3, National Administration of TCM, Changsha 410208, China
- Mycomedicine Research Lab, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiangqian Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|