1
|
Valderrábano RJ, Wipper B, Pencina KM, Migaud M, Shang YV, Latham NK, Montano M, Cunningham JM, Wilson L, Peng L, Memish-Beleva Y, Bhargava A, Swain PM, Lehman P, Lavu S, Livingston DJ, Bhasin S. Dysregulated nicotinamide adenine dinucleotide metabolome in patients hospitalized with COVID-19. Aging Cell 2024:e14326. [PMID: 39354697 DOI: 10.1111/acel.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 10/03/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) depletion has been postulated as a contributor to the severity of COVID-19; however, no study has prospectively characterized NAD+ and its metabolites in relation to disease severity in patients with COVID-19. We measured NAD+ and its metabolites in 56 hospitalized patients with COVID-19 and in two control groups without COVID-19: (1) 31 age- and sex-matched adults with comorbidities, and (2) 30 adults without comorbidities. Blood NAD+ concentrations in COVID-19 group were only slightly lower than in the control groups (p < 0.05); however, plasma 1-methylnicotinamide concentrations were significantly higher in patients with COVID-19 (439.7 ng/mL, 95% CI: 234.0, 645.4 ng/mL) than in age- and sex-matched controls (44.5 ng/mL, 95% CI: 15.6, 73.4) and in healthy controls (18.1 ng/mL, 95% CI 15.4, 20.8; p < 0.001 for each comparison). Plasma nicotinamide concentrations were also higher in COVID-19 group and in controls with comorbidities than in healthy control group. Plasma concentrations of 2-methyl-2-pyridone-5-carboxamide (2-PY), but not NAD+, were significantly associated with increased risk of death (HR = 3.65; 95% CI 1.09, 12.2; p = 0.036) and escalation in level of care (HR = 2.90, 95% CI 1.01, 8.38, p = 0.049). RNAseq and RTqPCR analyses of PBMC mRNA found upregulation of multiple genes involved in NAD+ synthesis as well as degradation, and dysregulation of NAD+-dependent processes including immune response, DNA repair, metabolism, apoptosis/autophagy, redox reactions, and mitochondrial function. Blood NAD+ concentrations are modestly reduced in COVID-19; however, NAD+ turnover is substantially increased with upregulation of genes involved in both NAD+ biosynthesis and degradation, supporting the rationale for NAD+ augmentation to attenuate disease severity.
Collapse
Affiliation(s)
- Rodrigo J Valderrábano
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin Wipper
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Karol Mateusz Pencina
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Yili Valentine Shang
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nancy K Latham
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Monty Montano
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Cunningham
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren Wilson
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liming Peng
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yusnie Memish-Beleva
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Avantika Bhargava
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pamela M Swain
- Metro International Biotech, Worcester, Massachusetts, USA
| | - Phoebe Lehman
- Metro International Biotech, Worcester, Massachusetts, USA
| | - Siva Lavu
- Metro International Biotech, Worcester, Massachusetts, USA
| | | | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Aiges M, Ramana KV. Significance of Vitamin Supplementation in Reducing the Severity of COVID-19. Mini Rev Med Chem 2024; 24:254-264. [PMID: 36967461 DOI: 10.2174/1389557523666230324081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023]
Abstract
Coronavirus disease-19 (COVID-19), a serious pandemic due to the SARS-CoV-2 virus infection, caused significant lockdowns, healthcare shortages, and deaths worldwide. The infection leads to an uncontrolled systemic inflammatory response causing severe respiratory distress and multiple-organ failure. Quick development of several vaccines efficiently controlled the spread of COVID-19. However, the rise of various new subvariants of COVID-19 demonstrated some concerns over the efficacy of existing vaccines. Currently, better vaccines to control these variants are still under development as several new subvariants of COVID-19, such as omicron BA-4, BA-5, and BF-7 are still impacting the world. Few antiviral treatments have been shown to control COVID-19 symptoms. Further, control of COVID-19 symptoms has been explored with many natural and synthetic adjuvant compounds in hopes of treating the deadly and contagious disease. Vitamins have been shown to modulate the immune system, function as antioxidants, and reduce the inflammatory response. Recent studies have investigated the potential role of vitamins, specifically vitamins A, B, C, D, and E, in reducing the immune and inflammatory responses and severity of the complication. In this brief article, we discussed our current understanding of the role of vitamins in controlling COVID-19 symptoms and their potential use as adjuvant therapy.
Collapse
Affiliation(s)
- Myia Aiges
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| | - Kota V Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| |
Collapse
|
3
|
Fu L, Baranova A, Cao H, Zhang F. Causal influences of osteoarthritis on COVID-19: a Mendelian randomization study. Front Med (Lausanne) 2023; 10:1287043. [PMID: 38020136 PMCID: PMC10644031 DOI: 10.3389/fmed.2023.1287043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Although observational and genetic studies have indicated a correlation between OA and COVID-19, it remains uncertain whether osteoarthritis (OA) contributes to the severity of COVID-19. Here, we aimed to investigate the potential causal links between the two. Methods In this study, we conducted Mendelian randomization (MR) analysis to investigate whether there is a potential causal connection between OA and COVID-19 outcomes. The analysis utilized publicly available GWAS summary datasets, incorporating data on OA (N = 455,221), SARS-CoV-2 infection (N = 2,597,856), hospitalized COVID-19 (N = 2,095,324), and critical COVID-19 (N = 1,086,211). Additionally, we performed a literature analysis to establish a molecular network connecting OA and COVID-19. Results The MR analysis showed causal effects of OA on hospitalized COVID-19 (OR: 1.21, 95% CI: 1.02-1.43, p = 0.026) and critical COVID-19 (OR: 1.35, 95% CI: 1.09-1.68, p = 0.006) but not on SARS-CoV-2 infection as such (OR: 1.00, 95% CI: 0.92-1.08, p = 0.969). Moreover, the literature-based pathway analysis uncovered a set of specific genes, such as CALCA, ACE, SIRT1, TNF, IL6, CCL2, and others, that were found to mediate the association between OA and COVID-19. Conclusion Our findings indicate that OA elevates the risk of severe COVID-19. Therefore, larger efforts should be made in the prevention of COVID-19 in OA patients.
Collapse
Affiliation(s)
- Li Fu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Research Centre for Medical Genetics, Moscow, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Kubiak JZ, Kloc M. Recent Progress in Research on COVID-19 Pathophysiology: Biomarkers, Repurposed Drugs, Viral Invasiveness, SARS-CoV-2 Genetic Diversity, the Crystal Structure of Viral Proteins, and the Molecular and Cellular Outcomes of COVID-19. Int J Mol Sci 2022; 23:ijms232214194. [PMID: 36430672 PMCID: PMC9698337 DOI: 10.3390/ijms232214194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
COVID-19 is a disease caused by a novel zoonotic germ known as SARS-CoV-2 coronavirus [...].
Collapse
Affiliation(s)
- Jacek Z. Kubiak
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35000 Rennes, France
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
- Correspondence: (J.Z.K.); (M.K.)
| | - Malgorzata Kloc
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.Z.K.); (M.K.)
| |
Collapse
|
5
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|