1
|
Komori T. Regulation of Skeletal Development and Maintenance by Runx2 and Sp7. Int J Mol Sci 2024; 25:10102. [PMID: 39337587 PMCID: PMC11432631 DOI: 10.3390/ijms251810102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Runx2 (runt related transcription factor 2) and Sp7 (Sp7 transcription factor 7) are crucial transcription factors for bone development. The cotranscription factor Cbfb (core binding factor beta), which enhances the DNA-binding capacity of Runx2 and stabilizes the Runx2 protein, is necessary for bone development. Runx2 is essential for chondrocyte maturation, and Sp7 is partly involved. Runx2 induces the commitment of multipotent mesenchymal cells to osteoblast lineage cells and enhances the proliferation of osteoprogenitors. Reciprocal regulation between Runx2 and the Hedgehog, fibroblast growth factor (Fgf), Wnt, and parathyroid hormone-like hormone (Pthlh) signaling pathways and Dlx5 (distal-less homeobox 5) plays an important role in these processes. The induction of Fgfr2 (Fgf receptor 2) and Fgfr3 expression by Runx2 is important for the proliferation of osteoblast lineage cells. Runx2 induces Sp7 expression, and Runx2+ osteoprogenitors become Runx2+Sp7+ preosteoblasts. Sp7 induces the differentiation of preosteoblasts into osteoblasts without enhancing their proliferation. In osteoblasts, Runx2 is required for bone formation by inducing the expression of major bone matrix protein genes, including Col1a1 (collagen type I alpha 1), Col1a2, Spp1 (secreted phosphoprotein 1), Ibsp (integrin binding sialoprotein), and Bglap (bone gamma carboxyglutamate protein)/Bglap2. Bglap/Bglap2 (osteocalcin) regulates the alignment of apatite crystals parallel to collagen fibrils but does not function as a hormone that regulates glucose metabolism, testosterone synthesis, and muscle mass. Sp7 is also involved in Co1a1 expression and regulates osteoblast/osteocyte process formation, which is necessary for the survival of osteocytes and the prevention of cortical porosity. SP7 mutations cause osteogenesis imperfecta in rare cases. Runx2 is an important pathogenic factor, while Runx1, Runx3, and Cbfb are protective factors in osteoarthritis development.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
2
|
Elahmer NR, Wong SK, Mohamed N, Alias E, Chin KY, Muhammad N. Mechanistic Insights and Therapeutic Strategies in Osteoporosis: A Comprehensive Review. Biomedicines 2024; 12:1635. [PMID: 39200100 PMCID: PMC11351389 DOI: 10.3390/biomedicines12081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoporosis, a metabolic bone disorder characterized by decreased bone mass per unit volume, poses a significant global health burden due to its association with heightened fracture risk and adverse impacts on patients' quality of life. This review synthesizes the current understanding of the pathophysiological mechanisms underlying osteoporosis, with a focus on key regulatory pathways governing osteoblast and osteoclast activities. These pathways include RANK/RANKL/OPG, Wingless-int (Wnt)/β-catenin, and Jagged1/Notch1 signaling, alongside the involvement of parathyroid hormone (PTH) signaling, cytokine networks, and kynurenine in bone remodeling. Pharmacotherapeutic interventions targeting these pathways play a pivotal role in osteoporosis management. Anti-resorptive agents, such as bisphosphonates, estrogen replacement therapy/hormone replacement therapy (ERT/HRT), selective estrogen receptor modulators (SERMs), calcitonin, anti-RANKL antibodies, and cathepsin K inhibitors, aim to mitigate bone resorption. Conversely, anabolic agents, including PTH and anti-sclerostin drugs, stimulate bone formation. In addition to pharmacotherapy, nutritional supplementation with calcium, vitamin D, and vitamin K2 holds promise for osteoporosis prevention. However, despite the availability of therapeutic options, a substantial proportion of osteoporotic patients remain untreated, highlighting the need for improved clinical management strategies. This comprehensive review aims to provide clinicians and researchers with a mechanistic understanding of osteoporosis pathogenesis and the therapeutic mechanisms of existing medications. By elucidating these insights, this review seeks to inform evidence-based decision-making and optimize therapeutic outcomes for patients with osteoporosis.
Collapse
Affiliation(s)
- Nyruz Ramadan Elahmer
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
- Department of Pharmacology, Pharmacy Faculty, Elmergib University, Al Khums 40414, Libya
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| |
Collapse
|
3
|
Gehre C, Qiu W, Klaus Jäger P, Wang X, Marques FC, Nelson BJ, Müller R, Qin XH. Guiding bone cell network formation in 3D via photosensitized two-photon ablation. Acta Biomater 2024; 174:141-152. [PMID: 38061678 DOI: 10.1016/j.actbio.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
A long-standing challenge in skeletal tissue engineering is to reconstruct a three-dimensionally (3D) interconnected bone cell network in vitro that mimics the native bone microarchitecture. While conventional hydrogels are extensively used in studying bone cell behavior in vitro, current techniques lack the precision to manipulate the complex pericellular environment found in bone. The goal of this study is to guide single bone cells to form a 3D network in vitro via photosensitized two-photon ablation of microchannels in gelatin methacryloyl (GelMA) hydrogels. A water-soluble two-photon photosensitizer (P2CK) was added to soft GelMA hydrogels to enhance the ablation efficiency. Remarkably, adding 0.5 mM P2CK reduced the energy dosage threshold five-fold compared to untreated controls, enabling more cell-compatible ablation. By employing low-energy ablation (100 J/cm2) with a grid pattern of 1 µm wide and 30 µm deep microchannels, we induced dendritic outgrowth in human mesenchymal stem cells (hMSC). After 7 days, the cells successfully utilized the microchannels and formed a 3D network. Our findings reveal that cellular viability after low-energy ablation was comparable to unablated controls, whereas high-energy ablation (500 J/cm2) resulted in 42 % cell death. Low-energy grid ablation significantly promoted network formation and >40 µm long protrusion outgrowth. While the broad-spectrum matrix metalloproteinase inhibitor (GM6001) reduced cell spreading by inhibiting matrix degradation, cells invaded the microchannel grid with long protrusions. Collectively, these results emphasize the potential of photosensitized two-photon hydrogel ablation as a high-precision tool for laser-guided biofabrication of 3D cellular networks in vitro. STATEMENT OF SIGNIFICANCE: The inaccessible nature of osteocyte networks in bones renders fundamental research on skeletal biology a major challenge. This limit is partly due to the lack of high-resolution tools that can manipulate the pericellular environment in 3D cultures in vitro. To create bone-like cellular networks, we employ a two-photon laser in combination with a two-photon sensitizer to erode microchannels with low laser dosages into GelMA hydrogels. By providing a grid of microchannels, the cells self-organized into a 3D interconnected network within days. Laser-guided formation of 3D networks from single cells at micron-scale resolution is demonstrated for the first time. In future, we envisage in vitro generation of bone cell networks with user-dictated morphologies for both fundamental and translational bone research.
Collapse
Affiliation(s)
| | - Wanwan Qiu
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland
| | | | - Xiaopu Wang
- Institute of Robotics and Intelligent Systems, Zürich, Switzerland
| | | | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
4
|
Al-Suhaimi EA, Akhtar S, Al Hubail FA, Alhawaj H, Aljafary MA, Alrumaih HS, Daghestani A, Al-Buainain A, Lardhi A, Homeida AM. A crosstalk between 'osteocyte lacunal-canalicular system' and metabolism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 142:397-420. [PMID: 39059992 DOI: 10.1016/bs.apcsb.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Considering the importance, bone physiology has long been studied to understand what systematic and cellular impact its cells and functions have. Exploring more questions is a substantially solid way to improve the understanding of bone physiological functions in/out sides. In adult bone, osteocytes (Ots) form about 95% of bone cells and live the longest lifespan inside their mineralized surroundings. Ots are the endocrine cells and originate from blood vessel's endothelial cells. In this work, we discussed the vital role of the "Ots". To determine the association between osteocytes' network with metabolic parameters in healthy mice, the experiments were performed on ten (10) adult C57BL6 male mice. Fasting blood and bone samples were collected weekly from mice for measurement of metabolic parameters and bone morphology. Scanning electron microscopy (SEM) revealed a 2D fine morphology of the bone which indicates a strong functional interconnection with bone nano/micro, and macro components of the organs. The long-branched canaliculi look like neurocytes in structure. The morphology and quantitative measurements of the osteocyte lacunal-canalicular system showed its wide spectrum spatial resolution of the positive and negative relationship within this system or metabolite parameters, confirming a strong cross connection between osteocyte lacunal-canalicular system and metabolism. We believe that the findings of this study can deliver a strategy about the potential roles of metabolic relation among osteocytes, insulin, and lipid in management of bone and metabolic diseases.
Collapse
Affiliation(s)
- Ebtesam A Al-Suhaimi
- Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fatima A Al Hubail
- Mawhiba Research Enrichment Program-2022, King Abdulaziz and His Companions Foundation for Giftedness and Creativity, Riyadh, Saudi Arabia
| | - Hussain Alhawaj
- Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Meneerah A Aljafary
- Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hamad S Alrumaih
- Department of Substitutive Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amira Daghestani
- Department of Substitutive Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Alanwood Al-Buainain
- College of Science and Human Studies in Jubail, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amer Lardhi
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - A M Homeida
- Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Liu Y, Pu X, Duan M, Chen C, Zhao Y, Zhang D, Xie J. Biomimetic Fibers Derived from an Equidistant Micropillar Platform Dictate Osteocyte Fate via Mechanoreception. NANO LETTERS 2023; 23:7950-7960. [PMID: 37418659 DOI: 10.1021/acs.nanolett.3c01739] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
It is a big challenge to design a biomimetic physical microenvironment with greater similarity to in vivo tissue to observe real cell behaviors. We established a novel cell culture platform based on patterned equidistant micropillars with stiff and soft stiffnesses to mimic the changes that happened in the transition from normal to osteoporotic disease. We first demonstrated that the soft micropillar substrate decreased osteocyte synaptogenesis through synaptogyrin 1 and that this decrease was accompanied by impairment of cell mechanoperception and a decrease in cellular cytoskeletal rearrangement. We then found that the soft equidistant micropillar substrate reduced the osteocyte synaptogenesis mainly via the inactivation of Erk/MAPK signaling. We finally found that soft micropillar substrate-mediated synaptogenesis impacted the cell-to-cell communication and matrix mineralization of osteocytes. Taken together, this study provides evidence of cellular mechanical responses that are much more similar to those of real osteocytes at the bone tissue level.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Yanfang Zhao
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, 1919 7th Ave. S, Birmingham, Alabama 35233, United States
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| |
Collapse
|
6
|
Bergen DJM, Maurizi A, Formosa MM, McDonald GLK, El-Gazzar A, Hassan N, Brandi ML, Riancho JA, Rivadeneira F, Ntzani E, Duncan EL, Gregson CL, Kiel DP, Zillikens MC, Sangiorgi L, Högler W, Duran I, Mäkitie O, Van Hul W, Hendrickx G. High Bone Mass Disorders: New Insights From Connecting the Clinic and the Bench. J Bone Miner Res 2023; 38:229-247. [PMID: 36161343 PMCID: PMC10092806 DOI: 10.1002/jbmr.4715] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology. This classification system may aid in hypothesis generation, for both wet lab experimental design and clinical genetic screening strategies. We discuss how functional genomics can shape discovery of novel HBM genes and/or mechanisms in the future, through implementation of omics assessments in existing and future model systems. Finally, we address strategies to improve gene identification in unsolved HBM cases and highlight the importance for cross-laboratory collaborations encompassing multidisciplinary efforts to transfer knowledge generated at the bench to the clinic. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Dylan J M Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK.,Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta.,Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Georgina L K McDonald
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Neelam Hassan
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | | | - José A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece.,Center for Evidence Synthesis in Health, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, USA.,Institute of Biosciences, University Research Center of loannina, University of Ioannina, Ioannina, Greece
| | - Emma L Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Douglas P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Luca Sangiorgi
- Department of Rare Skeletal Diseases, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
7
|
Hongo H, Yokoyama A, Yamada-Sekiguchi T, Yamamoto T, Yoshino H, Abe M, Haraguchi-Kitakamae M, Luiz de Freitas PH, Hasegawa T, Li M. Histochemical assessment on osteocytic osteolysis in lactating mice fed with a calcium-insufficient diet. J Oral Biosci 2022; 64:422-430. [PMID: 36152933 DOI: 10.1016/j.job.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/13/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to examine if feeding lactating mice a calcium-insufficient diet while simultaneously administering alendronate (ALN) could potentially induce osteocytic osteolysis. METHODS Lactating mice were fed calcium (Ca)-insufficient diets with or without ALN administration, and then their femurs were examined for TRAP and ALP, and observed by Kossa staining and transmission electron microscopy (TEM). Mice that had been fed a Ca-insufficient diet were then fed a 44Ca-containinig diet, and their tibial sections were examined by isotope microscopy. RESULTS Mice fed a Ca-insufficient diet had a reduced number of TRAP-positive osteoclasts after ALN administration. ALN-treated, lactating mice fed a Ca-insufficient diet had enlarged lacunae in their cortical bones, and TEM imaging demonstrated expanded regions between osteocytes and lacunar walls. In ALN-treated lactating mice fed a Ca-insufficient diet, huge areas of demineralized bone matrix occurred, centered around blood vessels in the cortical bone. Isotope microscopy showed 44Ca in the vicinity of the osteocytic lacunae, and in the broad, previously demineralized region around the blood vessels in the cortical bone of lactating mice fed a 44Ca-sufficient diet. CONCLUSIONS Bone demineralization likely takes place in the periphery of the osteocytic lacunae and in the broad regions around the blood vessels of lactating mice when they are exposed to severely reduced serum Ca through a Ca-insufficient diet coupled with ALN administration.
Collapse
Affiliation(s)
- Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ayako Yokoyama
- Gerontology, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tamaki Yamada-Sekiguchi
- Oral and Maxillofacial Surgery, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | | | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
8
|
Hasegawa T, Hongo H, Yamamoto T, Abe M, Yoshino H, Haraguchi-Kitakamae M, Ishizu H, Shimizu T, Iwasaki N, Amizuka N. Matrix Vesicle-Mediated Mineralization and Osteocytic Regulation of Bone Mineralization. Int J Mol Sci 2022; 23:ijms23179941. [PMID: 36077336 PMCID: PMC9456179 DOI: 10.3390/ijms23179941] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bone mineralization entails two mineralization phases: primary and secondary mineralization. Primary mineralization is achieved when matrix vesicles are secreted by osteoblasts, and thereafter, bone mineral density gradually increases during secondary mineralization. Nearby extracellular phosphate ions (PO43−) flow into the vesicles via membrane transporters and enzymes located on the vesicles’ membranes, while calcium ions (Ca2+), abundant in the tissue fluid, are also transported into the vesicles. The accumulation of Ca2+ and PO43− in the matrix vesicles induces crystal nucleation and growth. The calcium phosphate crystals grow radially within the vesicle, penetrate the vesicle’s membrane, and continue to grow outside the vesicle, ultimately forming mineralized nodules. The mineralized nodules then attach to collagen fibrils, mineralizing them from the contact sites (i.e., collagen mineralization). Afterward, the bone mineral density gradually increases during the secondary mineralization process. The mechanisms of this phenomenon remain unclear, but osteocytes may play a key role; it is assumed that osteocytes enable the transport of Ca2+ and PO43− through the canaliculi of the osteocyte network, as well as regulate the mineralization of the surrounding bone matrix via the Phex/SIBLINGs axis. Thus, bone mineralization is biologically regulated by osteoblasts and osteocytes.
Collapse
Affiliation(s)
- Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo 005-8543, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai 980-8577, Japan
| | - Hotaka Ishizu
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tomohiro Shimizu
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| |
Collapse
|
9
|
Wawrzyniak A, Balawender K. Structural and Metabolic Changes in Bone. Animals (Basel) 2022; 12:ani12151946. [PMID: 35953935 PMCID: PMC9367262 DOI: 10.3390/ani12151946] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Bone is an extremely metabolically active tissue that is regenerated and repaired over its lifetime by bone remodeling. Most bone diseases are caused by abnormal restructure processes that undermine bone structure and mechanical strength and trigger clinical symptoms, such as pain, deformity, fracture, and abnormalities of calcium and phosphate homoeostasis. The article examines the main aspects of bone development, anatomy, structure, and the mechanisms of cell and molecular regulation of bone remodeling. Abstract As an essential component of the skeleton, bone tissue provides solid support for the body and protects vital organs. Bone tissue is a reservoir of calcium, phosphate, and other ions that can be released or stored in a controlled manner to provide constant concentration in body fluids. Normally, bone development or osteogenesis occurs through two ossification processes (intra-articular and intra-chondral), but the first produces woven bone, which is quickly replaced by stronger lamellar bone. Contrary to commonly held misconceptions, bone is a relatively dynamic organ that undergoes significant turnover compared to other organs in the body. Bone metabolism is a dynamic process that involves simultaneous bone formation and resorption, controlled by numerous factors. Bone metabolism comprises the key actions. Skeletal mass, structure, and quality are accrued and maintained throughout life, and the anabolic and catabolic actions are mostly balanced due to the tight regulation of the activity of osteoblasts and osteoclasts. This activity is also provided by circulating hormones and cytokines. Bone tissue remodeling processes are regulated by various biologically active substances secreted by bone tissue cells, namely RANK, RANKL, MMP-1, MMP-9, or type 1 collagen. Bone-derived factors (BDF) influence bone function and metabolism, and pathophysiological conditions lead to bone dysfunction. This work aims to analyze and evaluate the current literature on various local and systemic factors or immune system interactions that can affect bone metabolism and its impairments.
Collapse
|