1
|
Liu Y, Calzone K, McReynolds LJ. Genetic predisposition to myelodysplastic syndrome: Genetic counseling and transplant implications. Semin Hematol 2024:S0037-1963(24)00108-2. [PMID: 39443230 DOI: 10.1053/j.seminhematol.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
The development of myelodysplastic syndromes (MDS) is influenced by various genetic predispositions. Several important genes contribute to disease susceptibility. This paper explores common genetic predisposition genes in MDS, including DDX41, CEBPA, and SAMD9/SAMD9L, which are linked to hereditary conditions presenting diagnostic and clinical challenges. It delves into hereditary conditions that affect platelet production and count, such as RUNX1, ETV6, and ANKRD26, detailing their clinical features and how they contribute to an increased risk of MDS. The discussion extends to additional genetic syndromes like GATA2 deficiency, telomere biology disorders, Fanconi anemia, and Li-Fraumeni syndrome, along with new findings on genes like ERG that offer new insights into disease etiology. The importance of genetic counseling in MDS is underscored, outlining its goals, methods for evaluating family history, risk assessment, and the ethical considerations involved. Furthermore, the role of hematopoietic cell transplantation in managing MDS, particularly in patients with germline syndromes, is reviewed, emphasizing the need for optimal donor selection and personalized treatment approaches. This comprehensive overview illustrates the critical role of genetic factors in MDS and highlights the need for continued research and tailored clinical practices to improve patient outcomes.
Collapse
Affiliation(s)
- Yi Liu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Kathleen Calzone
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| |
Collapse
|
2
|
Tao J, Bian X, Zhou J, Zhang M. From microscopes to molecules: The evolution of prostate cancer diagnostics. Cytojournal 2024; 21:29. [PMID: 39391208 PMCID: PMC11464998 DOI: 10.25259/cytojournal_36_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 10/12/2024] Open
Abstract
In the ever-evolving landscape of oncology, the battle against prostate cancer (PCa) stands at a transformative juncture, propelled by the integration of molecular diagnostics into traditional cytopathological frameworks. This synthesis not only heralds a new epoch of precision medicine but also significantly enhances our understanding of the disease's genetic intricacies. Our comprehensive review navigates through the latest advancements in molecular biomarkers and their detection technologies, illuminating the potential these innovations hold for the clinical realm. With PCa persisting as one of the most common malignancies among men globally, the quest for early and precise diagnostic methods has never been more critical. The spotlight in this endeavor shines on the molecular diagnostics that reveal the genetic underpinnings of PCa, offering insights into its onset, progression, and resistance to conventional therapies. Among the genetic aberrations, the TMPRSS2-ERG fusion and mutations in genes such as phosphatase and tensin homolog (PTEN) and myelocytomatosis viral oncogene homolog (MYC) are identified as significant players in the disease's pathology, providing not only diagnostic markers but also potential therapeutic targets. This review underscores a multimodal diagnostic approach, merging molecular diagnostics with cytopathology, as a cornerstone in managing PCa effectively. This strategy promises a future where treatment is not only tailored to the individual's genetic makeup but also anticipates the disease's trajectory, offering hope for improved prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaokang Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Gamallat Y, Alwazan H, Turko R, Dang V, Seyedi S, Ghosh S, Bismar TA. Elevated LAMTOR4 Expression Is Associated with Lethal Prostate Cancer and Its Knockdown Decreases Cell Proliferation, Invasion, and Migration In Vitro. Int J Mol Sci 2024; 25:8100. [PMID: 39125671 PMCID: PMC11312415 DOI: 10.3390/ijms25158100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Late endosomal/lysosomal adaptor, MAPK and mTOR, or LAMTOR, is a scaffold protein complex that senses nutrients and integrates growth factor signaling. The role of LAMTOR4 in tumorigenesis is still unknown. However, there is a considerable possibility that LAMTOR4 is directly involved in tumor cell proliferation and metastasis. In the current study, we investigated the protein expression of LAMTOR4 in a cohort of 314 men who were undergoing transurethral resection of prostate (TURP) consisting of incidental, advanced and castration-resistant cases. We also correlated the data with ERG and PTEN genomic status and clinicopathological features including Gleason score and patients' outcome. Additionally, we performed in vitro experiments utilizing knockdown of LAMTOR4 in prostate cell lines, and we performed mRNA expression assessment using TCGA prostate adenocarcinoma (TCGA-PRAD) to explore the potential differentially expressed genes and pathways associated with LAMTOR4 overexpression in PCa patients. Our data indicate that high LAMTOR4 protein expression was significantly associated with poor overall survival (OS) (HR: 1.44, CI: 1.01-2.05, p = 0.047) and unfavorable cause-specific survival (CSS) (HR: 1.71, CI: 1.06-2.77, p = 0.028). Additionally, when high LAMTOR4 expression was combined with PTEN-negative cases (score 0), we found significantly poorer OS (HR: 2.22, CI: 1.37-3.59, p = 0.001) and CSS (HR: 3.46, CI: 1.86-6.46, p < 0.0001). Furthermore, ERG-positive cases with high LAMTOR4 exhibited lower OS (HR: 1.98, CI: 1.18-3.31, p = 0.01) and CSS (HR: 2.54, CI: 1.32-4.87, p = 0.005). In vitro assessment showed that knockdown of LAMTOR4 decreases PCa cell proliferation, migration, and invasion. Our data further showed that knockdown of LAMTOR4 in the LNCaP cell line significantly dysregulated the β catenin/mTOR pathway and tumorigenesis associated pathways. Inhibiting components of the mTOR pathway, including LAMTOR4, might offer a strategy to inhibit tumor progression and metastasis in prostate cancer.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Huseen Alwazan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Rasoul Turko
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Vincent Dang
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Sima Seyedi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sunita Ghosh
- Departments of Mathematical and Statistical Sciences and Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Tom Baker Cancer Center, Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Prostate Cancer Centre, Rockyview General Hospital, Calgary, AB T2V 1P9, Canada
- Alberta Precision Labs, Rockyview General Hospital, Calgary, AB T2V 1P9, Canada
| |
Collapse
|
4
|
Gu Y, Chen X, Tian M, Liu K. Erythroblast transformation-specific-related gene promotes metastasis of oral squamous cell carcinoma by transcriptionally upregulating peroxiredoxin 1. J Oral Pathol Med 2024; 53:404-413. [PMID: 38797866 DOI: 10.1111/jop.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Some studies confirmed that erythroblast transformation-specific-related gene (ERG) may be a pathogenic factor of oral squamous cell carcinoma (OSCC). However, the undergoing molecular mechanism has not been elucidated yet. OBJECTIVE In this study, the investigation will focus on how the transcription factor ERG modulates the biological behaviors of OSCC. METHODS In this study, cancer tissue specimens and corresponding paracancer tissues were collected from 54 patients. Real-time polymerase chain reaction analysis and Western blots were employed to detect the expression of multiple genes. Cell proliferation assays, Transwell, and flow cytometry assay were utilized to detect the proliferation, invasion, and apoptosis of OSCC cell, respectively. Dual luciferase reporter gene and chromatin immunoprecipitation assays were conducted to verify the regulation of ERG on PRDX1. RESULTS ERG exhibits high expression levels in OSCC. Inhibition of ERG has been shown to effectively suppress the malignant growth of OSCC cells. Moreover, ERG has been found to transcriptionally upregulate the expression of PRDX1. The knockdown of PRDX1 has demonstrated its ability to inhibit the malignant growth of OSCC cells. Interestingly, when PRDX1 is overexpressed, it attenuates the inhibitory effect of si-ERG on the malignant growth of OSCC cells. This suggests that PRDX1 may play a crucial role in mediating the impact of ERG on malignancy in OSCC cells. CONCLUSION The transcription factor ERG promotes the expression of PRDX1, which could enhance the proliferation and invasion while inhibiting the apoptosis of OSCC cells.
Collapse
Affiliation(s)
- Yujia Gu
- The Fifth Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| | - Xue Chen
- The Fifth Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| | - Mei Tian
- The Fifth Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| | - Ke Liu
- Department of Stomatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Gamallat Y, Felipe Lima J, Seyedi S, Li Q, Rokne JG, Alhajj R, Ghosh S, Bismar TA. Exploring The Prognostic Significance of SET-Domain Containing 2 (SETD2) Expression in Advanced and Castrate-Resistant Prostate Cancer. Cancers (Basel) 2024; 16:1436. [PMID: 38611113 PMCID: PMC11010867 DOI: 10.3390/cancers16071436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
SET-domain containing 2 (SETD2) is a histone methyltransferase and an epigenetic modifier with oncogenic functionality. In the current study, we investigated the potential prognostic role of SETD2 in prostate cancer. A cohort of 202 patients' samples was assembled on tissue microarrays (TMAs) containing incidental, advanced, and castrate-resistant CRPCa cases. Our data showed significant elevated SETD2 expression in advanced and castrate-resistant disease (CRPCa) compared to incidental cases (2.53 ± 0.58 and 2.21 ± 0.63 vs. 1.9 ± 0.68; p < 0.001, respectively). Interestingly, the mean intensity of SETD2 expression in deceased vs. alive patients was also significantly different (2.31 ± 0.66 vs. 2 ± 0.68; p = 0.003, respectively). Overall, high SETD2 expression was found to be considered high risk and was significantly associated with poor prognosis and worse overall survival (OS) (HR 1.80; 95% CI: 1.28-2.53, p = 0.001) and lower cause specific survival (CSS) (HR 3.14; 95% CI: 1.94-5.08, p < 0.0001). Moreover, combining high-intensity SETD2 with PTEN loss resulted in lower OS (HR 2.12; 95% CI: 1.22-3.69, p = 0.008) and unfavorable CSS (HR 3.74; 95% CI: 1.67-8.34, p = 0.001). Additionally, high SETD2 intensity with ERG positive expression showed worse prognosis for both OS (HR 1.99, 95% CI 0.87-4.59; p = 0.015) and CSS (HR 2.14, 95% CI 0.98-4.68, p = 0.058). We also investigated the protein expression database TCPA, and our results showed that high SETD2 expression is associated with a poor prognosis. Finally, we performed TCGA PRAD gene set enrichment analysis (GSEA) data for SETD2 overexpression, and our data revealed a potential association with pathways involved in tumor progression such as the AMPK signaling pathway, the cAMP signaling pathway, and the PI3K-Akt signaling pathway, which are potentially associated with tumor progression, chemoresistance, and a poor prognosis.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (J.F.L.); (S.S.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Joema Felipe Lima
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (J.F.L.); (S.S.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sima Seyedi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (J.F.L.); (S.S.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Qiaowang Li
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada; (Q.L.)
| | - Jon George Rokne
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada; (Q.L.)
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada; (Q.L.)
- Department of Computer Engineering, Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Health Informatics, University of Southern Denmark, 5230 Odense, Denmark
| | - Sunita Ghosh
- Department of Medical Oncology, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (J.F.L.); (S.S.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Tom Baker Cancer Center, Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Prostate Cancer Centre, Alberta Health Services, Calgary, AB T2V 1P9, Canada
- Department of Pathology, Alberta Precision Labs, Calgary, AB T2V 1P9, Canada
| |
Collapse
|
6
|
Paniagua-Herranz L, Moreno I, Nieto-Jiménez C, Garcia-Lorenzo E, Díaz-Tejeiro C, Sanvicente A, Doger B, Pedregal M, Ramón J, Bartolomé J, Manzano A, Gyorffy B, Gutierrez-Uzquiza Á, Pérez Segura P, Calvo E, Moreno V, Ocana A. Genomic and Immunologic Correlates in Prostate Cancer with High Expression of KLK2. Int J Mol Sci 2024; 25:2222. [PMID: 38396898 PMCID: PMC10889228 DOI: 10.3390/ijms25042222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The identification of surfaceome proteins is a main goal in cancer research to design antibody-based therapeutic strategies. T cell engagers based on KLK2, a kallikrein specifically expressed in prostate cancer (PRAD), are currently in early clinical development. Using genomic information from different sources, we evaluated the immune microenvironment and genomic profile of prostate tumors with high expression of KLK2. KLK2 was specifically expressed in PRAD but it was not significant associated with Gleason score. Additionally, KLK2 expression did not associate with the presence of any immune cell population and T cell activating markers. A mild correlation between the high expression of KLK2 and the deletion of TMPRSS2 was identified. KLK2 expression associated with high levels of surface proteins linked with a detrimental response to immune checkpoint inhibitors (ICIs) including CHRNA2, FAM174B, OR51E2, TSPAN1, PTPRN2, and the non-surface protein TRPM4. However, no association of these genes with an outcome in PRAD was observed. Finally, the expression of these genes in PRAD did not associate with an outcome in PRAD and any immune populations. We describe the immunologic microenvironment on PRAD tumors with a high expression of KLK2, including a gene signature linked with an inert immune microenvironment, that predicts the response to ICIs in other tumor types. Strategies targeting KLK2 with T cell engagers or antibody-drug conjugates will define whether T cell mobilization or antigen release and stimulation of immune cell death are sufficient effects to induce clinical activity.
Collapse
Affiliation(s)
- Lucía Paniagua-Herranz
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain (A.S.); (P.P.S.)
| | - Irene Moreno
- START MadridCentro Integral Oncológico Clara Campal, 28050 Madrid, Spain (J.R.)
| | - Cristina Nieto-Jiménez
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain (A.S.); (P.P.S.)
| | | | - Cristina Díaz-Tejeiro
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain (A.S.); (P.P.S.)
| | - Adrián Sanvicente
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain (A.S.); (P.P.S.)
| | - Bernard Doger
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain (V.M.)
| | - Manuel Pedregal
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain (V.M.)
| | - Jorge Ramón
- START MadridCentro Integral Oncológico Clara Campal, 28050 Madrid, Spain (J.R.)
| | - Jorge Bartolomé
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain (A.S.); (P.P.S.)
| | - Arancha Manzano
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain (A.S.); (P.P.S.)
| | - Balázs Gyorffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7-9, H-1094 Budapest, Hungary
- Cancer Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudosok Korutja 2, H-1117 Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Álvaro Gutierrez-Uzquiza
- Departamento Bioquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Health Research Institute, Ospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Pedro Pérez Segura
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain (A.S.); (P.P.S.)
| | - Emiliano Calvo
- START MadridCentro Integral Oncológico Clara Campal, 28050 Madrid, Spain (J.R.)
| | - Víctor Moreno
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain (V.M.)
| | - Alberto Ocana
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain (A.S.); (P.P.S.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
7
|
Li Y, Su H, Liu K, Zhao Z, Wang Y, Chen B, Xia J, Yuan H, Huang DS, Gu Y. Individualized detection of TMPRSS2-ERG fusion status in prostate cancer: a rank-based qualitative transcriptome signature. World J Surg Oncol 2024; 22:49. [PMID: 38331878 PMCID: PMC10854045 DOI: 10.1186/s12957-024-03314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/13/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND TMPRSS2-ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to identify a transcriptome signature to detect the T2E fusion status of PC at the individual level. METHODS Based on 272 high-throughput mRNA expression profiles from the Sboner dataset, we developed a rank-based algorithm to identify a qualitative signature to detect T2E fusion in PC. The signature was validated in 1223 samples from three external datasets (Setlur, Clarissa, and TCGA). RESULTS A signature, composed of five mRNAs coupled to ERG (five ERG-mRNA pairs, 5-ERG-mRPs), was developed to distinguish T2E fusion status in PC. 5-ERG-mRPs reached 84.56% accuracy in Sboner dataset, which was verified in Setlur dataset (n = 455, accuracy = 82.20%) and Clarissa dataset (n = 118, accuracy = 81.36%). Besides, for 495 samples from TCGA, two subtypes classified by 5-ERG-mRPs showed a higher level of significance in various T2E fusion features than subtypes obtained through current fusion prediction tools, such as STAR-Fusion. CONCLUSIONS Overall, 5-ERG-mRPs can robustly detect T2E fusion in PC at the individual level, which can be used on any gene measurement platform without specific normalization procedures. Hence, 5-ERG-mRPs may serve as an auxiliary tool for PC patient management.
Collapse
Affiliation(s)
- Yawei Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hang Su
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaidong Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhangxiang Zhao
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuquan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Xia
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huating Yuan
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - De-Shuang Huang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Yunyan Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
8
|
Ambrosini G, Cordani M, Zarrabi A, Alcon-Rodriguez S, Sainz RM, Velasco G, Gonzalez-Menendez P, Dando I. Transcending frontiers in prostate cancer: the role of oncometabolites on epigenetic regulation, CSCs, and tumor microenvironment to identify new therapeutic strategies. Cell Commun Signal 2024; 22:36. [PMID: 38216942 PMCID: PMC10790277 DOI: 10.1186/s12964-023-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
Prostate cancer, as one of the most prevalent malignancies in males, exhibits an approximate 5-year survival rate of 95% in advanced stages. A myriad of molecular events and mutations, including the accumulation of oncometabolites, underpin the genesis and progression of this cancer type. Despite growing research demonstrating the pivotal role of oncometabolites in supporting various cancers, including prostate cancer, the root causes of their accumulation, especially in the absence of enzymatic mutations, remain elusive. Consequently, identifying a tangible therapeutic target poses a formidable challenge. In this review, we aim to delve deeper into the implications of oncometabolite accumulation in prostate cancer. We center our focus on the consequential epigenetic alterations and impacts on cancer stem cells, with the ultimate goal of outlining novel therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Ambrosini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Sergio Alcon-Rodriguez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain
| | - Pedro Gonzalez-Menendez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
9
|
Timofte AD, Caruntu ID, Covic AC, Hancianu M, Girlescu N, Chifu MB, Giusca SE. Renal Function Parameters in Distinctive Molecular Subtypes of Prostate Cancer. Cancers (Basel) 2023; 15:5013. [PMID: 37894380 PMCID: PMC10605320 DOI: 10.3390/cancers15205013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer is a prevalent malignancy in male patients, having diverse clinical outcomes. The follow-up of patients diagnosed with prostate cancer involves the evaluation of renal function, because its impairment reduces patient survival rates and adds complexity to their treatment and clinical care. This study aimed to investigate the relationship between renal function parameters and distinctive molecular subtypes of prostate adenocarcinomas, defined by the immunoexpression of the SPINK1, ERG, HOXB13, and TFF3 markers. The study group comprised 72 patients with prostate cancer and associated chronic kidney disease (CKD) who underwent radical prostatectomy. Histopathological, molecular, and renal parameters were analyzed. Patients were categorized based on ERG/SPINK1 and HOXB13/TFF3 status, and correlations with renal function and prognostic grade groups were assessed. The ERG+/SPINK1+ subgroup exhibited significantly higher postoperative CKD stages and serum creatinine levels compared to the ERG+/SPINK1- subgroup. This suggests an intricate relationship between SPINK1 overexpression and renal function dynamics. The HOXB13-/TFF3+ subgroup displayed higher preoperative serum creatinine levels and CKD stages than the HOXB13-/TFF3- subgroup, aligning with TFF3's potential role in renal function. Furthermore, the study revealed associations between CKD stages and prognostic grade groups in different molecular subtypes, pointing out an intricate interplay between renal function and tumor behavior. Although the molecular classification of prostate acinar ADK is not yet implemented, this research underscores the variability of renal function parameters in different molecular subtypes, offering potential insights into patient prognosis.
Collapse
Affiliation(s)
- Andrei Daniel Timofte
- Department of Morpho-Functional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (N.G.); (M.B.C.); (S.E.G.)
| | - Irina-Draga Caruntu
- Department of Morpho-Functional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (N.G.); (M.B.C.); (S.E.G.)
- Department of Pathology, “Dr. C. I. Parhon” University Hospital, 700503 Iasi, Romania
- Romanian Medical Science Academy, 030171 Bucharest, Romania;
| | - Adrian C. Covic
- Romanian Medical Science Academy, 030171 Bucharest, Romania;
- Romanian Academy of Scientists, 50044 Bucharest, Romania
- Department Medical II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Nephrology, Dialysis and Renal Transplant Center, “Dr. C. I. Parhon” University Hospital, 700503 Iasi, Romania
| | - Monica Hancianu
- Department of Pharmaceutical Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Nona Girlescu
- Department of Morpho-Functional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (N.G.); (M.B.C.); (S.E.G.)
| | - Mariana Bianca Chifu
- Department of Morpho-Functional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (N.G.); (M.B.C.); (S.E.G.)
| | - Simona Eliza Giusca
- Department of Morpho-Functional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (N.G.); (M.B.C.); (S.E.G.)
- Department of Pathology, “Dr. C. I. Parhon” University Hospital, 700503 Iasi, Romania
| |
Collapse
|
10
|
Koukourakis IM, Platoni K, Kouloulias V, Arelaki S, Zygogianni A. Prostate Cancer Stem Cells: Biology and Treatment Implications. Int J Mol Sci 2023; 24:14890. [PMID: 37834336 PMCID: PMC10573523 DOI: 10.3390/ijms241914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Stem cells differentiate into mature organ/tissue-specific cells at a steady pace under normal conditions, but their growth can be accelerated during the process of tissue healing or in the context of certain diseases. It is postulated that the proliferation and growth of carcinomas are sustained by the presence of a vital cellular compartment resembling stem cells residing in normal tissues: 'stem-like cancer cells' or cancer stem cells (CSCs). Mutations in prostate stem cells can lead to the formation of prostate cancer. Prostate CSCs (PCSCs) have been identified and partially characterized. These express surface markers include CD44, CD133, integrin α2β1, and pluripotency factors like OCT4, NANOG, and SOX2. Several signaling pathways are also over-activated, including Notch, PTEN/Akt/PI3K, RAS-RAF-MEK-ERK and HH. Moreover, PCSCs appear to induce resistance to radiotherapy and chemotherapy, while their presence has been linked to aggressive cancer behavior and higher relapse rates. The development of treatment policies to target PCSCs in tumors is appealing as radiotherapy and chemotherapy, through cancer cell killing, trigger tumor repopulation via activated stem cells. Thus, blocking this reactive stem cell mobilization may facilitate a positive outcome through cytotoxic treatment.
Collapse
Affiliation(s)
- Ioannis M. Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece;
| | - Stella Arelaki
- Translational Functional Cancer Genomics, National Center for Tumor Diseases, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| |
Collapse
|
11
|
Militaru FC, Militaru V, Crisan N, Bocsan IC, Udrea AA, Catana A, Kutasi E, Militaru MS. Molecular basis and therapeutic targets in prostate cancer: A comprehensive review. BIOMOLECULES & BIOMEDICINE 2023; 23:760-771. [PMID: 37021836 PMCID: PMC10494850 DOI: 10.17305/bb.2023.8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Prostate cancer is one of the most significant causes of morbidity and mortality in male patients. The incidence increases with age, and it is higher among African Americans. The occurrence of prostate cancer is associated with many risk factors, including genetic and hereditary predisposition. The most common genetic syndromes associated with prostate cancer risk are BRCA-associated hereditary breast and ovarian cancer (HBOC) and Lynch syndrome. Local-regional therapy, i.e., surgery is beneficial in early-stage prostate cancer management. Advanced and metastatic prostate cancers require systemic therapies, including hormonal inhibition, chemotherapy, and targeted agents. Most prostate cancers can be treated by targeting the androgen-receptor pathway and decreasing androgen production or binding to androgen receptors (AR). Castration-resistant prostate cancer (CRPC) usually involves the PI3K/AKT/mTOR pathway and requires targeted therapy. Specific molecular therapy can target mutated cell lines in which DNA defect repair is altered, caused by mutations of BRCA2, partner and localizer of BRCA2 (PALB2), and phosphatase and tensin homolog (PTEN) or the transmembrane protease serine 2-ERG (TMPRSS2-ERG) fusion. Most benefits were demonstrated in cyclin dependent-kinase 12 (CDK12) mutated cell lines when treated with anti-programmed cell death protein 1 (PD1) therapy. Therapies targeting p53 and AKT are the subject of ongoing clinical trials. Many genetic defects are listed as diagnostic, prognostic, and clinically actionable markers in prostate cancer. Androgen receptor splice variant 7 (AR-V7) is an important oncogenic driver and an early diagnostic and prognostic marker, as well as a therapeutic target in hormone-resistant CRPC. This review summarizes the pathophysiological mechanisms and available targeted therapies for prostate cancer.
Collapse
Affiliation(s)
- Florentina Claudia Militaru
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Medisprof Cancer Center, Cluj-Napoca, Romania
| | - Valentin Militaru
- Medisprof Cancer Center, Cluj-Napoca, Romania
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Clinical County Hospital, Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea Catana
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Institute of Oncology I. Chiricuta, Cluj-Napoca, Romania
| | - Eniko Kutasi
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mariela Sanda Militaru
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Feitosa PMFA, Hirth CG, Silva-Fernandes IJDL, Dornelas CA. The relevance of ERG immunoexpression intensity for prostatic adenocarcinoma in radical prostatectomy of 635 samples. APMIS 2023; 131:465-471. [PMID: 37439391 DOI: 10.1111/apm.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/27/2023] [Indexed: 07/14/2023]
Abstract
Prostate cancer is the world's most frequently diagnosed malignancy in men. Recent work suggests that patients with high ERG expression intensity are significantly more likely to develop biochemical relapse and metastasis, and die of prostate cancer. The objective of this study was to determine the relationship between the intensity of ERG protein expression and the staging of prostate cancer and the formation of metastases in 635 samples. A retrospective cohort analysis was performed using immunohistochemistry reactions in tissue microarray samples taken from non-neoplastic and neoplastic prostate tissue from patients who underwent radical prostatectomies at a reference hospital from 2009 to 2016. For the ERG marker analysis, the samples were scored for the presence or absence of nuclear signals. Weak, moderate, or strong intensity of the nuclei of the observable tumor cells was considered to be positive markers. All told, 635 samples were evaluated, and the ERG expression was inconclusive in 9% of cases, while 30% were positive and 61% were negative. Of the samples with positive result: 25.8% were weak and focal, 53.2% were moderate, and 21% were strong. Finally, 21% of the cases with a positive ERG had a high Gleason score. Metastasis was detected in 41% of the patients who were ERG positive, and of these, the majority had moderate marking and were aged older than 60 years, although there was no statistically significant difference between the older and younger age groups. Patients with moderate to strong ERG staining had higher staging compared to the others, and no increase in metastasis was detected in patients with more intense ERG expression. More studies should be carried out to corroborate these results and to reach a consensus on the intensity and scoring of the expression levels of ERG markers.
Collapse
Affiliation(s)
- Priscilla Mariana Freitas Aguiar Feitosa
- Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Brazil
- Argos Laboratory in Fortaleza, Ceará, Brazil
- Federal University of Ceará, Fortaleza, Brazil
| | - Carlos Gustavo Hirth
- Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Brazil
- Federal University of Ceará, Fortaleza, Brazil
| | | | - Conceição Aparecida Dornelas
- Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Brazil
- Federal University of Ceará, Fortaleza, Brazil
- Faculty of Medicine, Medical-Surgical Medical Sciences, Federal University of Ceará, Fortaleza, Brazil
- State University of Rio de Janeiro, Rio de janeiro, Brazil
| |
Collapse
|
13
|
Legrand AJ, Choul-li S, Villeret V, Aumercier M. Poly(ADP-ribose) Polyremase-1 (PARP-1) Inhibition: A Promising Therapeutic Strategy for ETS-Expressing Tumours. Int J Mol Sci 2023; 24:13454. [PMID: 37686260 PMCID: PMC10487777 DOI: 10.3390/ijms241713454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
ETS transcription factors are a highly conserved family of proteins involved in the progression of many cancers, such as breast and prostate carcinomas, Ewing's sarcoma, and leukaemias. This significant involvement can be explained by their roles at all stages of carcinogenesis progression. Generally, their expression in tumours is associated with a poor prognosis and an aggressive phenotype. Until now, no efficient therapeutic strategy had emerged to specifically target ETS-expressing tumours. Nevertheless, there is evidence that pharmacological inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, specifically sensitises ETS-expressing cancer cells to DNA damage and limits tumour progression by leading some of the cancer cells to death. These effects result from a strong interplay between ETS transcription factors and the PARP-1 enzyme. This review summarises the existing knowledge of this molecular interaction and discusses the promising therapeutic applications.
Collapse
Affiliation(s)
- Arnaud J. Legrand
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Souhaila Choul-li
- Département de Biologie, Faculté des Sciences, Université Chouaib Doukkali, BP-20, El Jadida 24000, Morocco;
| | - Vincent Villeret
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Marc Aumercier
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| |
Collapse
|
14
|
Choudhry M, Gamallat Y, Ghosh S, Bismar TA. Cleavage and Polyadenylation-Specific Factor 4 (CPSF4) Expression Is Associated with Enhanced Prostate Cancer Cell Migration and Cell Cycle Dysregulation, In Vitro. Int J Mol Sci 2023; 24:12961. [PMID: 37629142 PMCID: PMC10455462 DOI: 10.3390/ijms241612961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Potential oncogene cleavage and polyadenylation specific factor 4 (CPSF4) has been linked to several cancer types. However, little research has been conducted on its function in prostate cancer (PCa). In benign, incidental, advanced, and castrate resistant PCa (CRPCa) patient samples, protein expression of CPSF4 was examined on tissue microarray (TMAs) of 353 PCa patients using immunohistochemistry. Using the 'The Cancer Genome Atlas' Prostate Adenocarcinoma (TCGA PRAD) database, significant correlations were found between high CPSF4 expression and high-risk genomic abnormalities such as ERG-fusion, ETV1-fusion, and SPOP mutations. Gene Set Enrichment Analysis (GSEA) of CPSF4 revealed evidence for the increase in biological processes such as cellular proliferation and metastasis. We further examined the function of CPSF4 in vitro and confirmed CPSF4 clinical outcomes and its underlying mechanism. Our findings showed a substantial correlation between Gleason groups and CPSF4 protein expression. In vitro, CPSF4 knockdown reduced cell invasion and migration while also causing G1 and G2 arrest in PC3 cell lines. Our findings demonstrate that CPSF4 may be used as a possible biomarker in PCa and support its oncogenic function in cellular proliferation and metastasis.
Collapse
Affiliation(s)
- Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.C.); (Y.G.)
- Department of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.C.); (Y.G.)
- Department of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sunita Ghosh
- Department of Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.C.); (Y.G.)
- Department of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
15
|
Salokas K, Dashi G, Varjosalo M. Decoding Oncofusions: Unveiling Mechanisms, Clinical Impact, and Prospects for Personalized Cancer Therapies. Cancers (Basel) 2023; 15:3678. [PMID: 37509339 PMCID: PMC10377698 DOI: 10.3390/cancers15143678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer-associated gene fusions, also known as oncofusions, have emerged as influential drivers of oncogenesis across a diverse range of cancer types. These genetic events occur via chromosomal translocations, deletions, and inversions, leading to the fusion of previously separate genes. Due to the drastic nature of these mutations, they often result in profound alterations of cellular behavior. The identification of oncofusions has revolutionized cancer research, with advancements in sequencing technologies facilitating the discovery of novel fusion events at an accelerated pace. Oncofusions exert their effects through the manipulation of critical cellular signaling pathways that regulate processes such as proliferation, differentiation, and survival. Extensive investigations have been conducted to understand the roles of oncofusions in solid tumors, leukemias, and lymphomas. Large-scale initiatives, including the Cancer Genome Atlas, have played a pivotal role in unraveling the landscape of oncofusions by characterizing a vast number of cancer samples across different tumor types. While validating the functional relevance of oncofusions remains a challenge, even non-driver mutations can hold significance in cancer treatment. Oncofusions have demonstrated potential value in the context of immunotherapy through the production of neoantigens. Their clinical importance has been observed in both treatment and diagnostic settings, with specific fusion events serving as therapeutic targets or diagnostic markers. However, despite the progress made, there is still considerable untapped potential within the field of oncofusions. Further research and validation efforts are necessary to understand their effects on a functional basis and to exploit the new targeted treatment avenues offered by oncofusions. Through further functional and clinical studies, oncofusions will enable the advancement of precision medicine and the drive towards more effective and specific treatments for cancer patients.
Collapse
Affiliation(s)
- Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
16
|
Schimmelpfennig C, Rade M, Füssel S, Löffler D, Blumert C, Bertram C, Borkowetz A, Otto DJ, Puppel SH, Hönscheid P, Sommer U, Baretton GB, Köhl U, Wirth M, Thomas C, Horn F, Kreuz M, Reiche K. Characterization and evaluation of gene fusions as a measure of genetic instability and disease prognosis in prostate cancer. BMC Cancer 2023; 23:575. [PMID: 37349736 DOI: 10.1186/s12885-023-11019-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent cancers worldwide. The clinical manifestations and molecular characteristics of PCa are highly variable. Aggressive types require radical treatment, whereas indolent ones may be suitable for active surveillance or organ-preserving focal therapies. Patient stratification by clinical or pathological risk categories still lacks sufficient precision. Incorporating molecular biomarkers, such as transcriptome-wide expression signatures, improves patient stratification but so far excludes chromosomal rearrangements. In this study, we investigated gene fusions in PCa, characterized potential novel candidates, and explored their role as prognostic markers for PCa progression. METHODS We analyzed 630 patients in four cohorts with varying traits regarding sequencing protocols, sample conservation, and PCa risk group. The datasets included transcriptome-wide expression and matched clinical follow-up data to detect and characterize gene fusions in PCa. With the fusion calling software Arriba, we computationally predicted gene fusions. Following detection, we annotated the gene fusions using published databases for gene fusions in cancer. To relate the occurrence of gene fusions to Gleason Grading Groups and disease prognosis, we performed survival analyses using the Kaplan-Meier estimator, log-rank test, and Cox regression. RESULTS Our analyses identified two potential novel gene fusions, MBTTPS2,L0XNC01::SMS and AMACR::AMACR. These fusions were detected in all four studied cohorts, providing compelling evidence for the validity of these fusions and their relevance in PCa. We also found that the number of gene fusions detected in a patient sample was significantly associated with the time to biochemical recurrence in two of the four cohorts (log-rank test, p-value < 0.05 for both cohorts). This was also confirmed after adjusting the prognostic model for Gleason Grading Groups (Cox regression, p-values < 0.05). CONCLUSIONS Our gene fusion characterization workflow revealed two potential novel fusions specific for PCa. We found evidence that the number of gene fusions was associated with the prognosis of PCa. However, as the quantitative correlations were only moderately strong, further validation and assessment of clinical value is required before potential application.
Collapse
Affiliation(s)
- Carolin Schimmelpfennig
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Michael Rade
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Susanne Füssel
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Dennis Löffler
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Conny Blumert
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Catharina Bertram
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Angelika Borkowetz
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Dominik J Otto
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sven-Holger Puppel
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Pia Hönscheid
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Köhl
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, Medical Faculty, University Hospital, University of Leipzig, Leipzig, Germany
| | - Manfred Wirth
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christian Thomas
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Friedemann Horn
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Markus Kreuz
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
- Institute of Clinical Immunology, Medical Faculty, University Hospital, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
17
|
Gamallat Y, Choudhry M, Li Q, Rokne JG, Alhajj R, Abdelsalam R, Ghosh S, Arbet J, Boutros PC, Bismar TA. Serrate RNA Effector Molecule (SRRT) Is Associated with Prostate Cancer Progression and Is a Predictor of Poor Prognosis in Lethal Prostate Cancer. Cancers (Basel) 2023; 15:2867. [PMID: 37345203 DOI: 10.3390/cancers15102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Arsenite-resistance protein 2, also known as serrate RNA effector molecule (ARS2/SRRT), is known to be involved in cellular proliferation and tumorigenicity. However, its role in prostate cancer (PCa) has not yet been established. We investigated the potential role of SRRT in 496 prostate samples including benign, incidental, advanced, and castrate-resistant patients treated by androgen deprivation therapy (ADT). We also explored the association of SRRT with common genetic aberrations in lethal PCa using immunohistochemistry (IHC) and performed a detailed analysis of SRRT expression using The Cancer Genome Atlas (TCGA PRAD) by utilizing RNA-seq, clinical information (pathological T category and pathological Gleason score). Our findings indicated that high SRRT expression was significantly associated with poor overall survival (OS) and cause-specific survival (CSS). SRRT expression was also significantly associated with common genomic aberrations in lethal PCa such as PTEN loss, ERG gain, mutant TP53, or ATM. Furthermore, TCGA PRAD data revealed that high SRRT mRNA expression was significantly associated with higher Gleason scores, PSA levels, and T pathological categories. Gene set enrichment analysis (GSEA) of RNAseq data from the TCGA PRAD cohort indicated that SRRT may play a potential role in regulating the expression of genes involved in prostate cancer aggressiveness. Conclusion: The current data identify the SRRT's potential role as a prognostic for lethal PCa, and further research is required to investigate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Qiaowang Li
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jon George Rokne
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Computer Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
- Department of Health Informatics, University of Southern Denmark, 5230 Odense, Denmark
| | - Ramy Abdelsalam
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Sunita Ghosh
- Departments of Mathematical and Statistical Sciences and Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Jaron Arbet
- Departments of Human Genetics and Urology, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Paul C Boutros
- Departments of Human Genetics and Urology, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
- Prostate Cancer Centre, Calgary, AB T2V 1P9, Canada
| |
Collapse
|
18
|
Kumar S, Shuaib M, AlAsmari AF, Alqahtani F, Gupta S. GNL3 and PA2G4 as Prognostic Biomarkers in Prostate Cancer. Cancers (Basel) 2023; 15:2723. [PMID: 37345060 DOI: 10.3390/cancers15102723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 06/23/2023] Open
Abstract
Prostate cancer is a multifocal and heterogeneous disease common in males and remains the fifth leading cause of cancer-related deaths worldwide. The prognosis of prostate cancer is variable and based on the degree of cancer and its stage at the time of diagnosis. Existing biomarkers for the prognosis of prostate cancer are unreliable and lacks specificity and sensitivity in guiding clinical decision. There is need to search for novel biomarkers having prognostic and predictive capabilities in guiding clinical outcomes. Using a bioinformatics approach, we predicted GNL3 and PA2G4 as biomarkers of prognostic significance in prostate cancer. A progressive increase in the expression of GNL3 and PA2G4 was observed during cancer progression having significant association with poor survival in prostate cancer patients. The Receiver Operating Characteristics of both genes showed improved area under the curve against sensitivity versus specificity in the pooled samples from three different GSE datasets. Overall, our analysis predicted GNL3 and PA2G4 as prognostic biomarkers of clinical significance in prostate cancer.
Collapse
Affiliation(s)
- Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, Punjab, India
| | - Mohd Shuaib
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, Punjab, India
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Bowling GC, Rands MG, Dobi A, Eldhose B. Emerging Developments in ETS-Positive Prostate Cancer Therapy. Mol Cancer Ther 2023; 22:168-178. [PMID: 36511830 DOI: 10.1158/1535-7163.mct-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a global health concern, which has a low survival rate in its advanced stages. Even though second-generation androgen receptor-axis inhibitors serve as the mainstay treatment options, utmost of the metastatic cases progress into castration-resistant prostate cancer after their initial treatment response with poor prognostic outcomes. Hence, there is a dire need to develop effective inhibitors that aim the causal oncogenes tangled in the prostate cancer initiation and progression. Molecular-targeted therapy against E-26 transformation-specific (ETS) transcription factors, particularly ETS-related gene, has gained wide attention as a potential treatment strategy. ETS rearrangements with the male hormone responsive transmembrane protease serine 2 promoter defines a significant number of prostate cancer cases and is responsible for cancer initiation and progression. Notably, inhibition of ETS activity has shown to reduce tumorigenesis, thus highlighting its potential as a clinical therapeutic target. In this review, we recapitulate the various targeted drug approaches, including small molecules, peptidomimetics, nucleic acids, and many others, aimed to suppress ETS activity. Several inhibitors have demonstrated ERG antagonist activity in prostate cancer, but further investigations into their molecular mechanisms and impacts on nontumor ETS-containing tissues is warranted.
Collapse
Affiliation(s)
- Gartrell C Bowling
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mitchell G Rands
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Binil Eldhose
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| |
Collapse
|
20
|
Aquaporins as Prognostic Biomarker in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15020331. [PMID: 36672280 PMCID: PMC9856769 DOI: 10.3390/cancers15020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is a complex heterogeneous disease that affects millions of males worldwide. Despite rapid advances in molecular biology and innovation in technology, few biomarkers have been forthcoming in prostate cancer. The currently available biomarkers for the prognosis of prostate cancer are inadequate and face challenges, thus having limited clinical utility. To date, there are a number of prognostic and predictive biomarkers identified for prostate cancer but lack specificity and sensitivity to guide clinical decision making. There is still tremendous scope for specific biomarkers to understand the natural history and complex biology of this heterogeneous disease, and to identify early treatment responses. Accumulative studies indicate that aquaporins (AQPs) a family of membrane water channels may serve as a prognostic biomarker for prostate cancer in monitoring disease advancement. In the present review, we discuss the existing prostate cancer biomarkers, their limitations, and aquaporins as a prospective biomarker of prognostic significance in prostate cancer.
Collapse
|
21
|
Gamallat Y, Bakker A, Khosh Kish E, Choudhry M, Walker S, Aldakheel S, Seyedi S, Huang KC, Ghosh S, Gotto G, Bismar TA. The Association between Cyclin Dependent Kinase 2 Associated Protein 1 (CDK2AP1) and Molecular Subtypes of Lethal Prostate Cancer. Int J Mol Sci 2022; 23:ijms232113326. [PMID: 36362115 PMCID: PMC9658869 DOI: 10.3390/ijms232113326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed types of malignancy and is the second leading cause of cancer-related death in men in developed countries. Cyclin dependent kinase 2 associate protein 1(CDK2AP1) is an epigenetic and cell cycle regulator gene which has been downregulated in several malignancies, but its involvement in PCa has not yet been investigated in a clinical setting. We assessed the prognostic value of CDK2AP1 expression in a cohort of men diagnosed with PCa (n = 275) treated non-surgically by transurethral resection of the prostate (TURP) and studied the relationship between CDK2AP1 expression to various PCa molecular subtypes (ERG, PTEN, p53 and AR) and evaluated the association with clinical outcome. Further, we used bioinformatic tools to analyze the available TCGA PRAD transcriptomic data to explore the underlying mechanism. Our data confirmed increased expression of CDK2AP1 with higher Gleason Grade Group (GG) and metastatic PCa (p <0.0001). High CDK2AP1 expression was associated with worse overall survival (OS) (HR: 1.62, CI: 1.19−2.21, p = 0.002) and cause-specific survival (CSS) (HR: 2.012, CI 1.29−3.13, p = 0.002) using univariate analysis. When compared to each sub-molecular type. High CDK2AP1/PTEN-loss, abnormal AR or p53 expression showed even worse association to poorer OS and CCS and remained significant when adjusted for GG. Our data indicates that CDK2AP1 directly binds to p53 using the Co-Immunoprecipitation (Co-IP) technique, which was validated using molecular docking tools. This suggests that these two proteins have a significant association through several binding features and correlates with our observed clinical data. In conclusion, our results indicated that the CDK2AP1 overexpression is associate with worse OS and CSS when combined with certain PCa molecular subtypes; interaction between p53 stands out as the most prominent candidate which directly interacts with CDK2AP1.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
| | - Andrea Bakker
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Simon Walker
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Saood Aldakheel
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sima Seyedi
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Kuo-Cheng Huang
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sunita Ghosh
- Departments of Mathematical and Statistical Sciences and Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | | | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|