1
|
Saunthararajah Y. Oncotherapy resistance explained by Darwinian and Lamarckian models. J Clin Invest 2024; 134:e179788. [PMID: 38618954 PMCID: PMC11014649 DOI: 10.1172/jci179788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Cell and antibody therapies directed against surface molecules on B cells, e.g., CD19-targeting chimeric antigen receptor T cells (CD19 CAR-T), are now standard for patients with chemorefractory B cell acute lymphoblastic leukemias and other B cell malignancies. However, early relapse rates remain high. In this issue of the JCI, Aminov, Giricz, and colleagues revealed that leukemia cells resisting CD19-targeted therapy had reduced CD19 but also low CD22 expression and were sensitive to Bruton's tyrosine kinase and/or MEK inhibition. Overall, their observations support the evolution of resistance following a Lamarckian model: the oncotherapy directly elicits adaptive, resistance-conferring reconfigurations, which are then inherited by daughter cells as epigenetic changes. The findings prompt reflection also on the broader role of epigenetics in decoupling of replication from lineage differentiation activation by the B cell lineage master transcription factor hub. Such oncogenesis and resistance mechanisms, being predictable and epigenetic, offer practical opportunities for intervention, potentially non-cross-resistant and safe vis-à-vis present cytotoxic and CAR-T treatments.
Collapse
|
2
|
Prelog T, Bucek S, Brozic A, Peterlin J, Kavcic M, Omerzel M, Markelc B, Jesenko T, Prevodnik VK. The influence of cytotoxic drugs on the immunophenotype of blast cells in paediatric B precursor acute lymphoblastic leukaemia. Radiol Oncol 2024; 58:133-144. [PMID: 38378030 PMCID: PMC10878768 DOI: 10.2478/raon-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Flow cytometry plays is important in the diagnosis of acute lymphoblastic leukaemia (ALL) and when antigen-specific immunotherapy is indicated. We have investigated the effects of prednisolone, vincristine, daunorubicin, asparaginase and methotrexate on the antigen expression on blast cells that could influence the planning of antigen-specific therapy as well as risk-based treatment assignment. PATIENTS AND METHODS Patients aged ≤ 17 years with de novo B-cell ALL (B-ALL) were enrolled in the study. Blast cells were isolated and exposed in vitro to 5 individual cytotoxic drugs in logarithmically increasing concentrations. Then, the expression of CD10, CD19, CD20, CD27, CD34, CD45, CD58, CD66c and CD137 antigens was determined by quantitative flow cytometry. RESULTS Cytotoxic drugs caused dose-dependent or dose-independent modulation of antigen expression. Daunorubicin caused a dose-dependent down-modulation of CD10, CD19, CD34, CD45 and CD58 and an up-modulation of CD137. Vincristine caused a dose-dependent down-modulation of CD19 and CD58 and an up-modulation of CD45. Daunorubicin also caused dose-independent down-modulation of CD27 and prednisolone down-modulation of CD10, CD19, CD27, CD34 and CD58. Down-modulation of CD20 was detected only in relation to the specific dose of daunorubicin. CONCLUSIONS The results of the study have shown that cytotoxic drugs can alter the expression of antigens that are important for immunotherapy. Importantly, daunorubicin, prednisolone and vincristine caused down-modulation of CD19 and CD58, suggesting that these drugs are better avoided during bridging therapy prior to bispecific antibodies or CAR-T cell therapy. In addition, immunophenotypic changes on blast cells induced by different drugs could also influence risk-based treatment assignment.
Collapse
Affiliation(s)
- Tomaz Prelog
- Department of Haemato-Oncology, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Bucek
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Andreja Brozic
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Jakob Peterlin
- Institute for Biostatistics and Medical Informatics, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Kavcic
- Department of Haemato-Oncology, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Masa Omerzel
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Veronika Kloboves Prevodnik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Institute of Pathology, Faculty of MedicineUniversity of Maribor, Maribor, Slovenia
| |
Collapse
|
3
|
Kegler A, Drewitz L, Arndt C, Daglar C, Rodrigues Loureiro L, Mitwasi N, Neuber C, González Soto KE, Bartsch T, Baraban L, Ziehr H, Heine M, Nieter A, Moreira-Soto A, Kühne A, Drexler JF, Seliger B, Laube M, Máthé D, Pályi B, Hajdrik P, Forgách L, Kis Z, Szigeti K, Bergmann R, Feldmann A, Bachmann M. A novel ACE2 decoy for both neutralization of SARS-CoV-2 variants and killing of infected cells. Front Immunol 2023; 14:1204543. [PMID: 37383226 PMCID: PMC10293748 DOI: 10.3389/fimmu.2023.1204543] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to millions of infections and deaths worldwide. As this virus evolves rapidly, there is a high need for treatment options that can win the race against new emerging variants of concern. Here, we describe a novel immunotherapeutic drug based on the SARS-CoV-2 entry receptor ACE2 and provide experimental evidence that it cannot only be used for (i) neutralization of SARS-CoV-2 in vitro and in SARS-CoV-2-infected animal models but also for (ii) clearance of virus-infected cells. For the latter purpose, we equipped the ACE2 decoy with an epitope tag. Thereby, we converted it to an adapter molecule, which we successfully applied in the modular platforms UniMAB and UniCAR for retargeting of either unmodified or universal chimeric antigen receptor-modified immune effector cells. Our results pave the way for a clinical application of this novel ACE2 decoy, which will clearly improve COVID-19 treatment.
Collapse
Affiliation(s)
- Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Laura Drewitz
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cansu Daglar
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Liliana Rodrigues Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Nicola Mitwasi
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Christin Neuber
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Karla Elizabeth González Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Larysa Baraban
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Holger Ziehr
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Markus Heine
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Annabel Nieter
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Andres Moreira-Soto
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Kühne
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Barbara Seliger
- Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute of Translational Immunology, Medical High School, Brandenburg an der Havel, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, In Vivo Imaging Advanced Core Facility, Szeged, Hungary
- CROmed Translational Research Ltd., Budapest, Hungary
| | - Bernadett Pályi
- National Biosafety Laboratory, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
| | - Polett Hajdrik
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Forgách
- Semmelweis University School of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Zoltán Kis
- National Biosafety Laboratory, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|