1
|
Sheng C, Wang G, Liu Z, Zheng Y, Zhao Z, Tang D, Li W, Li A, Zong Q, Zhou R, Hou X, Yao M, Zhou Z. Polystyrene nanoplastics enhance thrombosis through adsorption of plasma proteins. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136168. [PMID: 39413524 DOI: 10.1016/j.jhazmat.2024.136168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Plastic products offer remarkable convenience for modern life. However, growing concerns are emerging regarding the potential health hazards posed by nanoplastics, which formed as plastics break down. Currently, the biological effects and mechanisms induced by nanoplastics are largely underexplored. In this study, we report that polystyrene nanoplastics can enter the bloodstream and enhance thrombus formation. Our findings show that polystyrene nanoplastics adsorb plasma proteins, particularly coagulation factor XII and plasminogen activator inhibitor-1, play a key role in this process, as demonstrated by proteomics, bioinformatic analyses, and molecular dynamics simulations. The adsorption of these proteins by nanoplastics is an essential factor in thrombosis enhancement. This newly uncovered pathway of protein adsorption leading to enhanced thrombosis provides new insights into the biological effects of nanoplastics, which may inform future safety and environmental risk assessment of plastics.
Collapse
Affiliation(s)
- Chao Sheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guozhen Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zijia Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yuchen Zheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Zijie Zhao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Duo Tang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wenzhuo Li
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ao Li
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Qi Zong
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Renhang Zhou
- School of Biomedicine, Beijing City University, Beijing 100094, China
| | - Xiaonan Hou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Mengfei Yao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Zhixiang Zhou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Yoshikawa T, Akiyoshi Y, Motokawa K, Nojiri K, Kawaguchi H. Cerebral Angiography and Neurobehavioral Patterns in a Non-human Primate Middle Cerebral Artery Occlusion Model. In Vivo 2024; 38:2245-2253. [PMID: 39187365 PMCID: PMC11363800 DOI: 10.21873/invivo.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM Ischemic stroke is a major health concern globally and developing reliable animal models is crucial for understanding its pathophysiology. This study evaluated the relationship between cerebral angiographic findings and neurologic dysfunction in an acute non-human primate thromboembolic stroke model and determined the minimum clot length for suitable middle cerebral artery (MCA) occlusion. MATERIALS AND METHODS A thromboembolic stroke model was developed by injecting autologous blood clots (length: 1, 2, 3, 4, 5, and 10 cm, n=1 to 3, 14 monkeys in total) into the internal carotid artery of male cynomolgus monkeys. Digital subtraction angiography (DSA) and neurologic deficit observation were performed pre-; immediately after (DSA only); and 1, 3, 6, and 24 h after embolization, and the relationship between clot length, neurologic deficits, and cerebral infarction was assessed. RESULTS DSA confirmed MCA occlusion in all animals after the clot injection. Recanalization of the MCA was observed within 6 h post-embolization in animals with shorter clots (≤3 cm). Neurologic deficits were evident in animals with MCA occlusion and correlated with the clot length. Larger clots (≥5 cm) led to permanent MCA occlusion, significant neurologic deficits, and extensive cerebral infarction. Histopathological examination revealed ischemic damage in brain regions corresponding to the infarcted areas. CONCLUSION Clot length is critical in determining the extent of neurologic dysfunction and cerebral infarction, with larger clots producing more severe outcomes. Furthermore, the minimum clot length required for model creation is 5 cm.
Collapse
Affiliation(s)
- Tetsuya Yoshikawa
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kagoshima, Japan;
| | - Yuki Akiyoshi
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kagoshima, Japan
| | - Kensei Motokawa
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kagoshima, Japan
| | - Koichiro Nojiri
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kagoshima, Japan
| | - Hiroaki Kawaguchi
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
3
|
Qin T, Huang M, Wei W, Zhou W, Tang Q, Huang Q, Tang N, Gai S. PLAUR facilitates the progression of clear cell renal cell carcinoma by activating the PI3K/AKT/mTOR signaling pathway. PeerJ 2024; 12:e17555. [PMID: 38948215 PMCID: PMC11214736 DOI: 10.7717/peerj.17555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Background PLAUR has been found upregulated in various tumors and closely correlated with the malignant phenotype of tumor cells. The aim of this study was to investigate the relationship between PLAUR and clear cell renal cell carcinoma (ccRCC) and its potential mechanism of promoting tumor progression. Methods The expression levels and clinical significance of PLAUR, along with the associated signaling pathways, were extensively investigated in ccRCC samples obtained from The Cancer Genome Atlas (TCGA). PLAUR expression in 20 pairs of ccRCC tumor tissues and the adjacent tissues was assessed using qRT-PCR and IHC staining. Additionally, a series of in vitro experiments were conducted to investigate the impact of PLAUR suppression on cellular proliferation, migration, invasion, cell cycle progression, and apoptosis in ccRCC. The Western blot analysis was employed to investigate the expression levels of pivotal genes associated with the PI3K/AKT/mTOR signaling pathway. Results The expression of PLAUR was significantly upregulated in ccRCC compared to normal renal tissues, and higher PLAUR expression in ccRCC was associated with a poorer prognosis than low expression. The in-vitro functional investigations demonstrated that knockdown of PLAUR significantly attenuated the proliferation, migration, and invasion capabilities of ccRCC cells. Concurrently, PLAUR knockdown effectively induced cellular apoptosis, modulated the cell cycle, inhibited the EMT process, and attenuated the activation of the PI3K/AKT/mTOR signaling pathway. PLAUR may represent a key mechanism underlying ccRCC progression. Conclusions The involvement of PLAUR in ccRCC progression may be achieved through the activation of the PI3K/AKT/mTOR signaling pathway, making it a reliable biomarker for the identification and prediction of ccRCC.
Collapse
Affiliation(s)
- Tianzi Qin
- The First Clinical Medical College of Jinan University, Guangzhou, China
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Minyu Huang
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Wenjuan Wei
- Department of Ultrasound department, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Wei Zhou
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Qianli Tang
- The First Clinical Medical College of Jinan University, Guangzhou, China
- The Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Qun Huang
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Ning Tang
- Youjinag Medical University for Nationalities, Baise, China
| | - Shasha Gai
- Youjinag Medical University for Nationalities, Baise, China
| |
Collapse
|
4
|
Li X, Li Q, Wang L, Ding H, Wang Y, Liu Y, Gong T. The interaction between oral microbiota and gut microbiota in atherosclerosis. Front Cardiovasc Med 2024; 11:1406220. [PMID: 38932989 PMCID: PMC11199871 DOI: 10.3389/fcvm.2024.1406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis (AS) is a complex disease caused by multiple pathological factors threatening human health-the pathogenesis is yet to be fully elucidated. In recent years, studies have exhibited that the onset of AS is closely involved with oral and gut microbiota, which may initiate or worsen atherosclerotic processes through several mechanisms. As for how the two microbiomes affect AS, existing mechanisms include invading plaque, producing active metabolites, releasing lipopolysaccharide (LPS), and inducing elevated levels of inflammatory mediators. Considering the possible profound connection between oral and gut microbiota, the effect of the interaction between the two microbiomes on the initiation and progression of AS has been investigated. Findings are oral microbiota can lead to gut dysbiosis, and exacerbate intestinal inflammation. Nevertheless, relevant research is not commendably refined and a concrete review is needed. Hence, in this review, we summarize the most recent mechanisms of the oral microbiota and gut microbiota on AS, illustrate an overview of the current clinical and epidemiological evidence to support the bidirectional connection between the two microbiomes and AS.
Collapse
Affiliation(s)
- Xinsi Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Qian Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Li Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical Co., Ltd, Taizhou, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Gong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Hajizade MS, Raee MJ, Faraji SN, Farvadi F, Kabiri M, Eskandari S, Tamaddon AM. Targeted drug delivery to the thrombus by fusing streptokinase with a fibrin-binding peptide (CREKA): an in silico study. Ther Deliv 2024; 15:399-411. [PMID: 38686829 DOI: 10.4155/tde-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Aim: Streptokinase has poor selectivity and provokes the immune response. In this study, we used in silico studies to design a fusion protein to achieve targeted delivery to the thrombus. Materials & methods: Streptokinase was analyzed computationally for mapping. The fusion protein modeling and quality assessment were carried out on several servers. The enzymatic activity and the stability of the fusion protein and its complex with plasminogen were assessed through molecular docking analysis and molecular dynamics simulation respectively. Results: Physicochemical properties analysis, protein quality assessments, protein-protein docking and molecular dynamics simulations predicted that the designed fusion protein is functionally active. Conclusion: Our results showed that this fusion protein might be a prospective candidate as a novel thrombolytic agent with better selectivity.
Collapse
Affiliation(s)
- Mohammad Soroosh Hajizade
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
| | - Seyed Nooreddin Faraji
- School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Fakhrossadat Farvadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
| | - Maryam Kabiri
- Arnold & Marie Schwartz College of Pharmacy & Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
6
|
Wang Q, Shao G, Zhao X, Wong HH, Chin K, Zhao M, Bai A, Bloom MS, Love ZZ, Chu CR, Cheng Z, Robinson WH. Dysregulated fibrinolysis and plasmin activation promote the pathogenesis of osteoarthritis. JCI Insight 2024; 9:e173603. [PMID: 38502232 PMCID: PMC11141881 DOI: 10.1172/jci.insight.173603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Joint injury is associated with risk for development of osteoarthritis (OA). Increasing evidence suggests that activation of fibrinolysis is involved in OA pathogenesis. However, the role of the fibrinolytic pathway is not well understood. Here, we showed that the fibrinolytic pathway, which includes plasminogen/plasmin, tissue plasminogen activator, urokinase plasminogen activator (uPA), and the uPA receptor (uPAR), was dysregulated in human OA joints. Pharmacological inhibition of plasmin attenuated OA progression after a destabilization of the medial meniscus in a mouse model whereas genetic deficiency of plasmin activator inhibitor, or injection of plasmin, exacerbated OA. We detected increased uptake of uPA/uPAR in mouse OA joints by microPET/CT imaging. In vitro studies identified that plasmin promotes OA development through multiple mechanisms, including the degradation of lubricin and cartilage proteoglycans and induction of inflammatory and degradative mediators. We showed that uPA and uPAR produced inflammatory and degradative mediators by activating the PI3K, 3'-phosphoinositide-dependent kinase-1, AKT, and ERK signaling cascades and activated matrix metalloproteinases to degrade proteoglycan. Together, we demonstrated that fibrinolysis contributes to the development of OA through multiple mechanisms and suggested that therapeutic targeting of the fibrinolysis pathway can prevent or slow development of OA.
Collapse
Affiliation(s)
- Qian Wang
- Division of Immunology & Rheumatology, Stanford School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Guoqiang Shao
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection
- Department of Radiology, Stanford Bio-X Program, and
| | - Xiaoyi Zhao
- Division of Immunology & Rheumatology, Stanford School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Heidi H Wong
- Division of Immunology & Rheumatology, Stanford School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Kate Chin
- Division of Immunology & Rheumatology, Stanford School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Mackenzie Zhao
- Division of Immunology & Rheumatology, Stanford School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Audrey Bai
- Division of Immunology & Rheumatology, Stanford School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Michelle S Bloom
- Division of Immunology & Rheumatology, Stanford School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Zelda Z Love
- Division of Immunology & Rheumatology, Stanford School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Constance R Chu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Orthopaedic Surgery, Stanford School of Medicine, Stanford, California, USA
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection
- Department of Radiology, Stanford Bio-X Program, and
| | - William H Robinson
- Division of Immunology & Rheumatology, Stanford School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
7
|
Skripchenko NV, Alekseeva LA, Zheleznikova GF, Skripchenko EY, Bessonova TV, Zhirkov AA. [Factors of the hemostasis system as biomarkers of severe course of acute viral infections]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:63-74. [PMID: 38529865 DOI: 10.17116/jnevro202412403163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The authors give literature review of hemostasis and immune system factors intraction as main biomarkers of a severe cause of viral infectious diseases. Pro-inflamatory cytokines as the main markers of inflammation, can serve both as biomarkers of the clinical severity of the infectious process and reflect the state of the hemostatic and fibrinolytic systems, since components of these systems are present in various structures of the central nervous system and affect the development of neurons and synaptic plasticity. An inverse correlation has been proven between the concentration of D-dimer and the oxygenation index, and the development of DIC is not associated with the presence of respiratory failure in patients with influenza type A, while the ferritin concentration directly reflects the severity of the disease. One of the markers of endothelial damage may be soluble thrombomodulin, which, however, is rarely used in routine clinical practice. Cytoflavin is a highly effective pathogenetic drug that affects various parts of the hemostasis system, has anti-ischemic, antioxidant, antihypoxic, immunocorrective effect, which is indicated for any generalized infectious disease since its debut.
Collapse
Affiliation(s)
- N V Skripchenko
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
- Saint Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - L A Alekseeva
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - G F Zheleznikova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - E Yu Skripchenko
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
- Saint Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - T V Bessonova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - A A Zhirkov
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| |
Collapse
|
8
|
Fu Y, Xue H, Wang T, Ding Y, Cui Y, Nie H. Fibrinolytic system and COVID-19: From an innovative view of epithelial ion transport. Biomed Pharmacother 2023; 163:114863. [PMID: 37172333 PMCID: PMC10169260 DOI: 10.1016/j.biopha.2023.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/14/2023] Open
Abstract
Lifeways of worldwide people have changed dramatically amid the coronavirus disease 2019 (COVID-19) pandemic, and public health is at stake currently. In the early stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, fibrinolytic system is mostly inhibited, which is responsible for the development of hypofibrinolysis, promoting disseminated intravascular coagulation, hyaline membrane formation, and pulmonary edema. Whereas the common feature and risk factor at advanced stage is a large amount of fibrin degradation products, including D-dimer, the characteristic of hyperfibrinolysis. Plasmin can cleave both SARS-CoV-2 spike protein and γ subunit of epithelial sodium channel (ENaC), a critical element to edematous fluid clearance. In this review, we aim to sort out the role of fibrinolytic system in the pathogenesis of COVID-19, as well as provide the possible guidance in current treating methods. In addition, the abnormal regulation of ENaC in the occurrence of SARS-CoV-2 mediated hypofibrinolysis and hyperfibrinolysis are summarized, with the view of proposing an innovative view of epithelial ion transport in preventing the dysfunction of fibrinolytic system during the progress of COVID-19.
Collapse
Affiliation(s)
- Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hao Xue
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yong Cui
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
9
|
Sachs UJ, Kirsch-Altena A, Müller J. Markers of Hereditary Thrombophilia with Unclear Significance. Hamostaseologie 2022; 42:370-380. [PMID: 36549289 DOI: 10.1055/s-0042-1757562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thrombophilia leads to an increased risk of venous thromboembolism. Widely accepted risk factors for thrombophilia comprise deficiencies of protein C, protein S, and antithrombin, as well as the factor V "Leiden" mutation, the prothrombin G20210A mutation, dysfibrinogenemia, and, albeit less conclusive, increased levels of factor VIII. Besides these established markers of thrombophilia, risk factors of unclear significance have been described in the literature. These inherited risk factors include deficiencies or loss-of-activity of the activity of ADAMTS13, heparin cofactor II, plasminogen, tissue factor pathway inhibitor (TFPI), thrombomodulin, protein Z (PZ), as well as PZ-dependent protease inhibitor. On the other hand, thrombophilia has been linked to the gain-of-activity, or elevated levels, of α2-antiplasmin, angiotensin-converting enzyme, coagulation factors IX (FIX) and XI (FXI), fibrinogen, homocysteine, lipoprotein(a), plasminogen activator inhibitor-1 (PAI-1), and thrombin-activatable fibrinolysis inhibitor (TAFI). With respect to the molecular interactions that may influence the thrombotic risk, more complex mechanisms have been described for endothelial protein C receptor (EPCR) and factor XIII (FXIII) Val34Leu. With focus on the risk for venous thrombosis, the present review aims to give an overview on the current knowledge on the significance of the aforementioned markers for thrombophilia screening. According to the current knowledge, there appears to be weak evidence for a potential impact of EPCR, FIX, FXI, FXIII Val34Leu, fibrinogen, homocysteine, PAI-1, PZ, TAFI, and TFPI on the thrombotic risk.
Collapse
Affiliation(s)
- Ulrich J Sachs
- Department of Thrombosis and Haemostasis, Giessen University Hospital, Giessen, Germany.,Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Justus Liebig University, Giessen, Germany
| | - Anette Kirsch-Altena
- Department of Thrombosis and Haemostasis, Giessen University Hospital, Giessen, Germany
| | - Jens Müller
- Institute for Experimental Haematology and Transfusion Medicine, Bonn University Hospital, Bonn, Germany
| |
Collapse
|
10
|
Gao C, Tang S, Zhang H, Zhang H, Zhang T, Bao B, Zhu Y, Wu W. A Novel Marine Pyran-Isoindolone Compound Enhances Fibrin Lysis Mediated by Single-Chain Urokinase-Type Plasminogen Activator. Mar Drugs 2022; 20:md20080495. [PMID: 36005498 PMCID: PMC9410493 DOI: 10.3390/md20080495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Fungi fibrinolytic compound 1 (FGFC1) is a rare pyran-isoindolone derivative with fibrinolytic activity. The aim of this study was to further determine the effect of FGFC1 on fibrin clots lysis in vitro. We constructed a fibrinolytic system containing single-chain urokinase-type plasminogen activator (scu-PA) and plasminogen to measure the fibrinolytic activity of FGFC1 using the chromogenic substrate method. After FITC-fibrin was incubated with increasing concentrations of FGFC1, the changes in the fluorescence intensity and D-dimer in the lysate were measured using a fluorescence microplate reader. The fibrin clot structure induced by FGFC1 was observed and analyzed using a scanning electron microscope and laser confocal microscope. We found that the chromogenic reaction rate of the mixture system increased from (15.9 ± 1.51) × 10−3 min−1 in the control group to (29.7 ± 1.25) × 10−3 min−1 for 12.8 μM FGFC1(p < 0.01). FGFC1 also significantly increased the fluorescence intensity and d-dimer concentration in FITC fibrin lysate. Image analysis showed that FGFC1 significantly reduced the fiber density and increased the fiber diameter and the distance between protofibrils. These results show that FGFC1 can effectively promote fibrin lysis in vitro and may represent a novel candidate agent for thrombolytic therapy.
Collapse
Affiliation(s)
- Chunli Gao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
| | - Simin Tang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
| | - Haixing Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
| | - Huishu Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
| | - Tian Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
| | - Bin Bao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Yuping Zhu
- Basic Medical Experimental Teaching Center, Basic Medical College, Naval Medical University, PLA, Shanghai 200433, China
- Correspondence: (Y.Z.); (W.W.)
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
- Correspondence: (Y.Z.); (W.W.)
| |
Collapse
|