1
|
Safa, Norton CE. Plasminogen Activation Inhibitor-1 Promotes Resilience to Acute Oxidative Stress in Cerebral Arteries from Females. Pharmaceuticals (Basel) 2024; 17:1210. [PMID: 39338372 PMCID: PMC11434643 DOI: 10.3390/ph17091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Plasminogen activation inhibitor-1 (PAI-1) plays a central role in thrombus formation leading to stroke; however, the contributions of PAI-1 to cellular damage in response to reactive oxygen species which are elevated during reperfusion are unknown. Given that PAI-1 can limit apoptosis, we hypothesized that PAI increases the resilience of cerebral arteries to H2O2 (200 µM). Cell death, mitochondrial membrane potential, and mitochondrial ROS production were evaluated in pressurized mouse posterior cerebral arteries from males and females. The effects of pharmacological and genetic inhibition of PAI-1 signaling were evaluated with the inhibitor PAI-039 (10 µM) and PAI-1 knockout mice, respectively. During exposure to H2O2, PCAs from male mice lacking PAI-1 had reduced mitochondrial depolarization and smooth muscle cell death, and PAI-039 increased EC death. In contrast, mitochondrial depolarization and cell death were augmented in female PCAs. With no effect of PAI-1 inhibition on resting mitochondrial ROS production, vessels from female PAI-1 knockout mice had increased mitochondrial ROS generation during H2O2 exposure. During acute exposure to oxidative stress, protein ablation of PAI-1 enhances cell death in posterior cerebral arteries from females while limiting cell death in males. These findings provide important considerations for blood flow restoration during stroke treatment.
Collapse
Affiliation(s)
| | - Charles E. Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
2
|
Friščić T, Galić E, Vidović D, Brečić P, Alfirević I. The Curious Role of PAI-1 in Severe Obstructive Sleep Apnea. Biomedicines 2024; 12:1197. [PMID: 38927404 PMCID: PMC11201177 DOI: 10.3390/biomedicines12061197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) has a significant role in fibrinolysis, atherogenesis, cellular senescence, and chronic inflammation. OSA (obstructive sleep apnea) leads to increased PAI-1 levels and the development of cardiovascular disease (CVD). The aim of this study was to determine the effects of CPAP therapy on coagulation parameters and PAI-1 in patients with severe OSA. This prospective, controlled study enrolled 57 patients who were newly diagnosed with severe OSA, 37 of whom had had good CPAP adherence after 6 months of therapy (usage of the device for at least 4 h per night), and their data were analyzed. The analysis showed a statistically significant increase in D-dimer values before CPAP therapy (415 (316.5-537.5)) vs. after therapy (499 (327-652)), p = 0.0282, and a decrease in fibrinogen values (3.665 ± 0.752 before CPAP therapy vs. 3.365 ± 0.771 after therapy, p = 0.0075)). PAI-1 concentration values before and after CPAP therapy did not differ significantly (17.35 ± 7.01 ng/mL before CPAP therapy vs. 17.42 ± 6.99 ng/mL after therapy, p = 0.9367). This study shows a tendency for fibrinolytic capacity to improve in patients with OSA after CPAP therapy, although PAI-1 levels did not differ significantly.
Collapse
Affiliation(s)
- Tea Friščić
- Clinical Hospital Sveti Duh, 10000 Zagreb, Croatia; (E.G.); (I.A.)
| | - Edvard Galić
- Clinical Hospital Sveti Duh, 10000 Zagreb, Croatia; (E.G.); (I.A.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Domagoj Vidović
- University Psychiatric Hospital Vrapče, 10000 Zagreb, Croatia;
| | - Petrana Brečić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- University Psychiatric Hospital Vrapče, 10000 Zagreb, Croatia;
| | - Igor Alfirević
- Clinical Hospital Sveti Duh, 10000 Zagreb, Croatia; (E.G.); (I.A.)
| |
Collapse
|
3
|
Stein D, Ovadia D, Katz S, Brar PC. Association of hepatokines with markers of endothelial dysfunction and vascular reactivity in obese adolescents. J Pediatr Endocrinol Metab 2024; 37:309-316. [PMID: 38404032 DOI: 10.1515/jpem-2023-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES Obesity-induced insulin resistance (IR) is known to influence hepatic cytokines (hepatokines), including fibroblast growth factor (FGF-21), fetuin-A, and chemerin. This study aimed to investigate the association between hepatokines and markers of endothelial dysfunction and vascular reactivity in obese adolescents. METHODS A total of 45 obese adolescents were categorized into three groups based on glucose tolerance: normal glucose tolerance (NGT), prediabetes (PD), and type 2 diabetes (T2D). We examined the relationships between FGF-21, fetuin-A, and chemerin with endothelial markers (plasminogen activator inhibitor-1 [PAI-1], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion marker-1 [VCAM-1]) and vascular surrogates (brachial artery reactivity testing [BART] and peak reactive hyperemia [PRH]). RESULTS Obese adolescents (age 16.2±1.2 years; 62 % female, 65 % Hispanic) with NGT (n=20), PD (n=14), and T2D (n=11) had significant differences between groups in BMI; waist-hip ratio (p=0.05), systolic BP (p=0.008), LDL-C (p=0.02), PAI-1 (p<0.001). FGF-21 pg/mL (mean±SD: NGT vs. PD vs. T2D 54±42; 266±286; 160±126 p=0.006) and fetuin-A ng/mL (266±80; 253±66; 313±50 p=0.018), were significantly different while chemerin ng/mL (26±5; 31±10; 28±2) did not significantly differ between the groups. Positive correlations were found between chemerin and both PAI-1 (r=0.6; p=0.05) and ICAM-1 (r=0.6; p=0.05), FGF-21 and PAI-1 (r=0.6; p<0.001), and fetuin-A with TNFα (r=-0.4; p=0.05). Negative correlations were found between chemerin and PRH (r= -0.5; p=0.017) and fetuin-A and PRH (r=-0.4; p=0.05). CONCLUSIONS In our cohort, IR predicted higher FGF-21 levels suggesting a linear relationship may exist between the two parameters. Hepatokines can augment alterations in the microvascular milieu in obese adolescents as demonstrated by their associations with the markers PAI-1, ICAM-1, and PRH.
Collapse
Affiliation(s)
- David Stein
- Faculty of Medicine, 26745 Tel Aviv University , Tel Aviv, Israel
| | | | - Stuart Katz
- NYU Grossman School of Medicine Department, 5894 NYU Langone Health , New York, NY, USA
| | - Preneet Cheema Brar
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, 5894 New York University Grossman School of Medicine , New York, NY, USA
| |
Collapse
|
4
|
Chen J, Deng X, Lin T, Huang J, Yang Y, Lian N. Ferrostatin-1 Reversed Chronic Intermittent Hypoxia-Induced Ferroptosis in Aortic Endothelial Cells via Reprogramming Mitochondrial Function. Nat Sci Sleep 2024; 16:401-411. [PMID: 38680190 PMCID: PMC11055532 DOI: 10.2147/nss.s442186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Chronic intermittent hypoxia (CIH) related arterial endothelium injury is a common cause of cardiovascular system injury. However, the mechanism still needs to be clarified. In this study, we aimed to clarify the role and mechanism of ferrostatin-1 (Fer-1) in CIH-related rat arterial endothelial cells (ROAEC) ferroptosis. Methods ROAEC was divided into control group, CIH group, and CIH+ Fer-1 group. Cell viability was detected by cell counting kit 8 kits (CCK8). The apoptotic rate, reactive oxygen species (ROS) levels, Fe2+ levels, and lipid ROS levels were detected by flow cytometry. Malondialdehyde (MDA) levels and nicotinamide adenine dinucleotide (NAD+)/NADH ratio were detected via Elisa kits. The mRNA and protein levels of cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) were detected by qRT-PCR and Western blot. Mitochondrial structure and function were observed by transmission electron microscope (TEM) and mitochondrial membrane potential (MMP). Central carbon metabolism was measured to compare metabolites among each group. Results After the CIH exposure, ROAEC cell viability decreased; The levels of cell apoptosis, ROS, Fe2+, MDA, and lip ROS increased; The levels of NAD+/NADP ratio decreased; The mRNA and protein levels of GPX4 and SLC7A11 decreased (all p<0.05). Co-cultured with Fer-1 reversed the levels of apoptosis rate, cell viability, ROS, Fe2+, MAD, lipid ROS, NAD+/NADH ratio and the mRNA and protein expression of GPX4 and SLC7A11 (all p<0.05). The TEM results showed that damaged mitochondrial membrane and the matrix spillover in the CIH group. The results of the JC-1 assay showed decreased MMP in the CIH group. Fer-1 treatment ameliorated the mitochondrial injury. The results of central carbon metabolism found that CIH altered the metabolites in the TCA cycle, which were reversed by Fer-1 treatment. Conclusion CIH-induced ferroptosis in ROAEC, which were reversed by Fer-1 via reprogramming mitochondrial function.
Collapse
Affiliation(s)
- Jia Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Sleep-Disordered Breathing Clinic Center, Fuzhou, Fujian, People’s Republic of China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Xiaoyu Deng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Sleep-Disordered Breathing Clinic Center, Fuzhou, Fujian, People’s Republic of China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Ting Lin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Sleep-Disordered Breathing Clinic Center, Fuzhou, Fujian, People’s Republic of China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Jiefeng Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Sleep-Disordered Breathing Clinic Center, Fuzhou, Fujian, People’s Republic of China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yisong Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Sleep-Disordered Breathing Clinic Center, Fuzhou, Fujian, People’s Republic of China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Ningfang Lian
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Sleep-Disordered Breathing Clinic Center, Fuzhou, Fujian, People’s Republic of China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
5
|
Kanno Y. The Roles of Fibrinolytic Factors in Bone Destruction Caused by Inflammation. Cells 2024; 13:516. [PMID: 38534360 PMCID: PMC10968824 DOI: 10.3390/cells13060516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, Crohn's disease, periodontitis, and carcinoma metastasis frequently result in bone destruction. Pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-17 are known to influence bone loss by promoting the differentiation and activation of osteoclasts. Fibrinolytic factors, such as plasminogen (Plg), plasmin, urokinase-type plasminogen activator (uPA), its receptor (uPAR), tissue-type plasminogen activator (tPA), α2-antiplasmin (α2AP), and plasminogen activator inhibitor-1 (PAI-1) are expressed in osteoclasts and osteoblasts and are considered essential in maintaining bone homeostasis by regulating the functions of both osteoclasts and osteoblasts. Additionally, fibrinolytic factors are associated with the regulation of inflammation and the immune system. This review explores the roles of fibrinolytic factors in bone destruction caused by inflammation.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
6
|
Mata-Greenwood E, Chow WL, Anti NAO, Sands LD, Adeoye O, Ford SP, Nathanielsz PW. Dysregulation of Glucocorticoid Receptor Homeostasis and Glucocorticoid-Associated Genes in Umbilical Cord Endothelial Cells of Diet-Induced Obese Pregnant Sheep. Int J Mol Sci 2024; 25:2311. [PMID: 38396987 PMCID: PMC10888705 DOI: 10.3390/ijms25042311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Maternal obesity (MO) is associated with offspring cardiometabolic diseases that are hypothesized to be partly mediated by glucocorticoids. Therefore, we aimed to study fetal endothelial glucocorticoid sensitivity in an ovine model of MO. Rambouillet/Columbia ewes were fed either 100% (control) or 150% (MO) National Research Council recommendations from 60 d before mating until near-term (135 days gestation). Sheep umbilical vein and artery endothelial cells (ShUVECs and ShUAECs) were used to study glucocorticoid receptor (GR) expression and function in vitro. Dexamethasone dose-response studies of gene expression, activation of a glucocorticoid response element (GRE)-dependent luciferase reporter vector, and cytosolic/nuclear GR translocation were used to assess GR homeostasis. MO significantly increased basal GR protein levels in both ShUVECs and ShUAECs. Increased GR protein levels did not result in increased dexamethasone sensitivity in the regulation of key endothelial gene expression such as endothelial nitric oxide synthase, plasminogen activator inhibitor 1, vascular endothelial growth factor, or intercellular adhesion molecule 1. In ShUVECs, MO increased GRE-dependent transactivation and FKBP prolyl isomerase 5 (FKBP5) expression. ShUAECs showed generalized glucocorticoid resistance in both dietary groups. Finally, we found that ShUVECs were less sensitive to dexamethasone-induced activation of GR than human umbilical vein endothelial cells (HUVECs). These findings suggest that MO-mediated effects in the offspring endothelium could be further mediated by dysregulation of GR homeostasis in humans as compared with sheep.
Collapse
Affiliation(s)
- Eugenia Mata-Greenwood
- Lawrence D. Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.L.C.); (N.A.O.A.); (L.D.S.)
| | - Wendy L. Chow
- Lawrence D. Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.L.C.); (N.A.O.A.); (L.D.S.)
| | - Nana A. O. Anti
- Lawrence D. Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.L.C.); (N.A.O.A.); (L.D.S.)
| | - LeeAnna D. Sands
- Lawrence D. Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.L.C.); (N.A.O.A.); (L.D.S.)
| | - Olayemi Adeoye
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Stephen P. Ford
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA (P.W.N.)
| | - Peter W. Nathanielsz
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA (P.W.N.)
| |
Collapse
|
7
|
Mosleh MM, Sohn MJ, Kim HS. Endothelial marker profiles in cerebral radiation-induced vasculopathy: A comparative immunohistochemical analysis. Medicine (Baltimore) 2024; 103:e37130. [PMID: 38306519 PMCID: PMC10843420 DOI: 10.1097/md.0000000000037130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Radiation therapy results in radiation-induced vasculopathy, characterized by alterations in the vascular architecture stemming from radiation exposure. The exact molecular pathways and associated pathologies of this condition have yet to be comprehensively understood. This study aimed to identify specific markers' roles in cerebral vascular endothelial injury pathogenesis after radiosurgery and explore their unique expression patterns in diverse pathologies post-stereotactic radiosurgery. A retrospective cohort study was conducted to assess the expression profiles of endothelial markers via immunohistochemical analysis in 25 adult patients (13 males and 12 females) who had undergone neurosurgical resection for various central nervous system pathologies following stereotactic radiosurgery or radiotherapy from 2001 to 2015. Our findings revealed strong immunohistochemical expression of ICAM-1 and E-selectin across various disease states, while MMP-9, PAI-1, and eNOS exhibited moderate expression levels. In contrast, VCAM-1 and P-Selectin had the weakest expression across all groups. Notably, while individual markers showed significant variations in expression levels when comparing different diseases (P < .001), no substantial differences were found in the overall immunohistochemical expression patterns across the 5 distinct pathologies studied (P = .407, via 2-way ANOVA). Despite the varied long-term effects of radiotherapy on the vascular endothelium, a common thread of inflammation runs through the pathology of these conditions. The distinct patterns of marker expression identified in our study suggest that different markers play unique roles in the development of radiation-induced vasculopathy. These findings offer insights that could lead to the development of novel preventive strategies and treatments.
Collapse
Affiliation(s)
- Mohammad Mohsen Mosleh
- Department of Biomedical Science, Graduate School of Medicine, Inje University, Busanjin-gu, Busan, Korea
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, Busanjin-gu, Busan, Korea
- Department of Neurosurgery and Neuroscience & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Ilsanseo-gu, Goyang City, Gyeonggi-do, Korea
| | - Han Seong Kim
- Department of Pathology, Inje University Ilsan Paik Hospital, Inje University Ilsan Paik Hospital, College of Medicine, Ilsanseo-gu, Goyang City, Gyeonggi-do, Korea
| |
Collapse
|
8
|
Bizanti A, Zhang Y, Toledo Z, Bendowski KT, Harden SW, Mistareehi A, Chen J, Gozal D, Heal M, Christie R, Hunter PJ, Paton JFR, Cheng ZJ. Chronic intermittent hypoxia remodels catecholaminergic nerve innervation in mouse atria. J Physiol 2024; 602:49-71. [PMID: 38156943 PMCID: PMC10842556 DOI: 10.1113/jp284961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024] Open
Abstract
Chronic intermittent hypoxia (CIH, a model for sleep apnoea) is a major risk factor for several cardiovascular diseases. Autonomic imbalance (sympathetic overactivity and parasympathetic withdrawal) has emerged as a causal contributor of CIH-induced cardiovascular disease. Previously, we showed that CIH remodels the parasympathetic pathway. However, whether CIH induces remodelling of the cardiac sympathetic innervation remains unknown. Mice (male, C57BL/6J, 2-3 months) were exposed to either room air (RA, 21% O2 ) or CIH (alternating 21% and 5.7% O2 , every 6 min, 10 h day-1 ) for 8-10 weeks. Flat-mounts of their left and right atria were immunohistochemically labelled for tyrosine hydroxylase (TH, a sympathetic marker). Using a confocal microscope (or fluorescence microscope) and Neurlocudia 360 digitization and tracing system, we scanned both the left and right atria and quantitatively analysed the sympathetic axon density in both groups. The segmentation data was mapped onto a 3D mouse heart scaffold. Our findings indicated that CIH significantly remodelled the TH immunoreactive (-IR) innervation of the atria by increasing its density at the sinoatrial node, the auricles and the major veins attached to the atria (P < 0.05, n = 7). Additionally, CIH increased the branching points of TH-IR axons and decreased the distance between varicosities. Abnormal patterns of TH-IR axons around intrinsic cardiac ganglia were also found following CIH. We postulate that the increased sympathetic innervation may further amplify the effects of enhanced CIH-induced central sympathetic drive to the heart. Our work provides an anatomical foundation for the understanding of CIH-induced autonomic imbalance. KEY POINTS: Chronic intermittent hypoxia (CIH, a model for sleep apnoea) causes sympathetic overactivity, cardiovascular remodelling and hypertension. We determined the effect of CIH on sympathetic innervation of the mouse atria. In vivo CIH for 8-10 weeks resulted in an aberrant axonal pattern around the principal neurons within intrinsic cardiac ganglia and an increase in the density, branching point, tortuosity of catecholaminergic axons and atrial wall thickness. Utilizing mapping tool available from NIH (SPARC) Program, the topographical distribution of the catecholaminergic innervation of the atria were integrated into a novel 3D heart scaffold for precise anatomical distribution and holistic quantitative comparison between normal and CIH mice. This work provides a unique neuroanatomical understanding of the pathophysiology of CIH-induced autonomic remodelling.
Collapse
Affiliation(s)
- Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zulema Toledo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kohlton T Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Scott W Harden
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - David Gozal
- Joan C. Edwards School of medicine, Marshall University, Huntington, WV, USA
| | - Maci Heal
- MBF Bioscience, Williston, Vermont, USA
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Julian F R Paton
- Department Physiology, Manaaki Manawa-the Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
9
|
Badescu MC, Badulescu OV, Costache AD, Mitu O, Lupu VV, Dmour BA, Lupu A, Foia LG, Costache II, Rezus C. Atherosclerosis in Patients with Congenital Hemophilia: A Focus on Peripheral Artery Disease. Life (Basel) 2023; 13:2221. [PMID: 38004361 PMCID: PMC10672485 DOI: 10.3390/life13112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Advances in the treatment of hemophilia have increased the life expectancy of this population and we are currently facing diseases associated with aging, including cardiovascular ones. Coronary atherosclerosis, with acute myocardial infarction as the most severe form of manifestation, has been recognized as part of the comorbidities of hemophiliacs. However, little is known about peripheral artery disease. Available data show that hemophiliacs have cardiovascular risk factors and atherosclerosis similar to the general population. Impaired thrombus formation and phenotype of atheroma plaque rather than the burden of atherosclerosis explains their lower cardiovascular mortality. Since the effect of traditional cardiovascular risk factors overpowers that of decreased coagulability and promotes the onset and progression of atherosclerotic lesions, screening for traditional cardiovascular risk factors and peripheral artery disease should be integrated into standard hemophilia care. There is evidence that invasive treatments and long-term antithrombotic therapy are generally safe, provided that coagulation factor levels are taken into account and replacement therapy is given when necessary.
Collapse
Affiliation(s)
- Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Oana Viola Badulescu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Hematology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
- Cardiovascular Rehabilitation Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ovidiu Mitu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
- Cardiology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania (A.L.)
| | - Bianca-Ana Dmour
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
| | - Ancuta Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania (A.L.)
| | - Liliana Georgeta Foia
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Irina-Iuliana Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
- Cardiology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| |
Collapse
|
10
|
Molecular Pathology, Oxidative Stress, and Biomarkers in Obstructive Sleep Apnea. Int J Mol Sci 2023; 24:ijms24065478. [PMID: 36982552 PMCID: PMC10058074 DOI: 10.3390/ijms24065478] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is characterized by intermittent hypoxia (IH) during sleep due to recurrent upper airway obstruction. The derived oxidative stress (OS) leads to complications that do not only concern the sleep-wake rhythm but also systemic dysfunctions. The aim of this narrative literature review is to investigate molecular alterations, diagnostic markers, and potential medical therapies for OSAS. We analyzed the literature and synthesized the evidence collected. IH increases oxygen free radicals (ROS) and reduces antioxidant capacities. OS and metabolic alterations lead OSAS patients to undergo endothelial dysfunction, osteoporosis, systemic inflammation, increased cardiovascular risk, pulmonary remodeling, and neurological alterations. We treated molecular alterations known to date as useful for understanding the pathogenetic mechanisms and for their potential application as diagnostic markers. The most promising pharmacological therapies are those based on N-acetylcysteine (NAC), Vitamin C, Leptin, Dronabinol, or Atomoxetine + Oxybutynin, but all require further experimentation. CPAP remains the approved therapy capable of reversing most of the known molecular alterations; future drugs may be useful in treating the remaining dysfunctions.
Collapse
|
11
|
Cardiovascular Disease in Obstructive Sleep Apnea: Putative Contributions of Mineralocorticoid Receptors. Int J Mol Sci 2023; 24:ijms24032245. [PMID: 36768567 PMCID: PMC9916750 DOI: 10.3390/ijms24032245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition that is associated with oxidative stress, inflammation, and fibrosis, leading to endothelial dysfunction, arterial stiffness, and vascular insulin resistance, resulting in increased cardiovascular disease and overall mortality rates. To date, OSA remains vastly underdiagnosed and undertreated, with conventional treatments yielding relatively discouraging results for improving cardiovascular outcomes in OSA patients. As such, a better mechanistic understanding of OSA-associated cardiovascular disease (CVD) and the development of novel adjuvant therapeutic targets are critically needed. It is well-established that inappropriate mineralocorticoid receptor (MR) activation in cardiovascular tissues plays a causal role in a multitude of CVD states. Clinical studies and experimental models of OSA lead to increased secretion of the MR ligand aldosterone and excessive MR activation. Furthermore, MR activation has been associated with worsened OSA prognosis. Despite these documented relationships, there have been no studies exploring the causal involvement of MR signaling in OSA-associated CVD. Further, scarce clinical studies have exclusively assessed the beneficial role of MR antagonists for the treatment of systemic hypertension commonly associated with OSA. Here, we provide a comprehensive overview of overlapping mechanistic pathways recruited in the context of MR activation- and OSA-induced CVD and propose MR-targeted therapy as a potential avenue to abrogate the deleterious cardiovascular consequences of OSA.
Collapse
|
12
|
Advances in Molecular Pathology of Obstructive Sleep Apnea. Molecules 2022; 27:molecules27238422. [PMID: 36500515 PMCID: PMC9739159 DOI: 10.3390/molecules27238422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common syndrome that features a complex etiology and set of mechanisms. Here we summarized the molecular pathogenesis of OSA, especially the prospective mechanism of upper? airway dilator fatigue and the current breakthroughs. Additionally, we also introduced the molecular mechanism of OSA in terms of related studies on the main signaling pathways and epigenetics alterations, such as microRNA, long non-coding RNA, and DNA methylation. We also reviewed small molecular compounds, which are potential targets for gene regulations in the future, that are involved in the regulation of OSA. This review will be beneficial to point the way for OSA research within the next decade.
Collapse
|
13
|
Shramko VS, Stryukova EV, Kashtanova EV, Polonskaya YV, Stakhneva EM, Chernyavsky AM, Ragino YI. Adipokines and adipocytokines in men with coronary atherosclerosis and overweight. KARDIOLOGIIA 2022; 62:49-55. [DOI: 10.18087/cardio.2022.11.n2237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/16/2022] [Indexed: 12/23/2022]
Abstract
Aim To study concentrations of adipokines and their associations with proinflammatory cytokines in overweight men with coronary atherosclerosis. Material and methods This study included 79 men aged 45–60 years with atherosclerosis who had undergone coronary endarterectomy during a coronary bypass surgery, and were overweight (body weight index (BWI), 25.0–29.9 kg /m2). Based on a histological analysis of plaques, the patients were divided into two subgroups: 43 men with stable atherosclerotic plaques and 36 men with unstable plaques in coronary arteries. The control group consisted of 40 age- and BWI-matched men without clinical manifestations of IHD. Blood concentrations of adipokines, including adiponectin, adipsin, lipocalin-2, resistin, and plasminogen 1 activator inhibitor were measured by a multiplex analysis with a MILLIPLEX MAP Human Adipokine Panel 1. Concentrations of proinflammatory cytokines, including tumor necrosis factor α (TNF- α), interleukin (IL)-1β, IL-6, and C-reactive protein (CRP) were measured by enzyme immunoassay. Results The blood concentration of lipocalin -2 was higher in patients with coronary atherosclerosis and stable or unstable atherosclerotic plaques than in the control group (p<0.01). Both subgroups of men with coronary atherosclerosis were characterized by significant differences from the control group in concentrations of TNF-α (p<0.05), CRP, and IL-6 (p<0.01). The most significant direct correlations were found between adipokines and TNF-α, IL-6, and CRP (p<0.01). Results of a logistic regression analysis showed that relative odds for the presence of significant coronary stenoses increased with increasing blood concentrations of lipocalin-2 (OR=1.005, 95 % CI: 1.002–1.008, р=0.011) and IL-6 (OR=1.582 , 95 % CI: 1.241–2.017, р=0.001).Conclusion The changes in blood concentrations of adipokines associated with higher levels of proinflammatory cytokines may represent a factor that increases the probability of clinically significant coronary stenosis in overweight men with coronary atherosclerosis.
Collapse
Affiliation(s)
- V. S. Shramko
- Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
| | - E. V. Stryukova
- Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
| | - E. V. Kashtanova
- Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
| | - Ya. V. Polonskaya
- Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
| | - E. M. Stakhneva
- Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
| | | | - Yu. I. Ragino
- Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
| |
Collapse
|