1
|
Cantalupo P, Diacou A, Park S, Soman V, Chen J, Glenn D, Chandran U, Clark D. Single-cell RNA-seq reveals a resolving immune phenotype in the oral mucosa. iScience 2024; 27:110735. [PMID: 39280609 PMCID: PMC11399601 DOI: 10.1016/j.isci.2024.110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
The oral mucosa is the interface between the host immune response and the oral microbiota. In periodontal disease, the microbial plaque elicits a tissue-destructive immune response. Removal of the microbial stimulus initiates active resolution of inflammatory. Here, we use single-cell RNA-sequencing (scRNA-seq) to characterize the immune response within the oral mucosa across three distinct conditions of periodontal health, disease, and resolution in mice. We report gene expression shifts across the three conditions are driven by macrophage and neutrophils and identify a unique gene signature that characterizes resolution of disease. Macrophage subgroups are identified that demonstrate differential expansion across conditions, including a subgroup that expands during resolution with an immunoregulatory gene signature and enriched for surface marker Cd74. We validate expansion of this subgroup during resolution via flow cytometry. This work presents a robust single-cell dataset of immunological changes in the oral mucosa and identifies a resolution-associated macrophage phenotype in mucosal immunity.
Collapse
Affiliation(s)
- Paul Cantalupo
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Boulevard, Pittsburgh, PA 15206-3701, USA
| | - Alex Diacou
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, 335 Sutherland Dr., Pittsburgh, PA 15213, USA
| | - Sangmin Park
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, 335 Sutherland Dr., Pittsburgh, PA 15213, USA
| | - Vishal Soman
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Boulevard, Pittsburgh, PA 15206-3701, USA
| | - Jiamiao Chen
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, 335 Sutherland Dr., Pittsburgh, PA 15213, USA
| | - Deshawna Glenn
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, 335 Sutherland Dr., Pittsburgh, PA 15213, USA
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Boulevard, Pittsburgh, PA 15206-3701, USA
| | - Daniel Clark
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, 335 Sutherland Dr., Pittsburgh, PA 15213, USA
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Peng W, Chen Q, Zheng F, Xu L, Fang X, Wu Z. The emerging role of the semaphorin family in cartilage and osteoarthritis. Histochem Cell Biol 2024:10.1007/s00418-024-02303-y. [PMID: 38849589 DOI: 10.1007/s00418-024-02303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
In the pathogenesis of osteoarthritis, various signaling pathways may influence the bone joint through a common terminal pathway, thereby contributing to the pathological remodeling of the joint. Semaphorins (SEMAs) are cell-surface proteins actively involved in and primarily responsible for regulating chondrocyte function in the pathophysiological process of osteoarthritis (OA). The significance of the SEMA family in OA is increasingly acknowledged as pivotal. This review aims to summarize the mechanisms through which different members of the SEMA family impact various structures within joints. The findings indicate that SEMA3A and SEMA4D are particularly relevant to OA, as they participate in cartilage injury, subchondral bone remodeling, or synovitis. Additionally, other elements such as SEMA4A and SEMA5A may also contribute to the onset and progression of OA by affecting different components of the bone and joint. The mentioned mechanisms demonstrate the indispensable role of SEMA family members in OA, although the detailed mechanisms still require further exploration.
Collapse
Affiliation(s)
- Wenjing Peng
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Chen
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Fengjuan Zheng
- The Department of Orthodontics, Hangzhou Stomatology Hospital, Hangzhou, China
| | - Li Xu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Xinyi Fang
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| | - Zuping Wu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
3
|
Yamamoto K, Sawada SI, Shindo S, Nakamura S, Kwon YM, Kianinejad N, Vardar S, Hernandez M, Akiyoshi K, Kawai T. Cationic Glucan Dendrimer Gel-Mediated Local Delivery of Anti-OC-STAMP-siRNA for Treatment of Pathogenic Bone Resorption. Gels 2024; 10:377. [PMID: 38920924 PMCID: PMC11202495 DOI: 10.3390/gels10060377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Osteoclast stimulatory transmembrane protein (OC-STAMP) plays a pivotal role in the promotion of cell fusion during osteoclast differentiation (osteoclastogenesis) in the context of pathogenic bone resorption. Thus, it is plausible that the suppression of OC-STAMP through a bioengineering approach could lead to the development of an effective treatment for inflammatory bone resorptive diseases with minimum side effects. Here, we synthesized two types of spermine-bearing (Spe) cationic glucan dendrimer (GD) gels (with or without C12) as carriers of short interfering RNA (siRNA) to silence OC-STAMP. The results showed that amphiphilic C12-GD-Spe gel was more efficient in silencing OC-STAMP than GD-Spe gel and that the mixture of anti-OC-STAMP siRNA/C12-GD-Spe significantly downregulated RANKL-induced osteoclastogenesis. Also, local injection of anti-OC-STAMP-siRNA/C12-GD-Spe could attenuate bone resorption induced in a mouse model of periodontitis. These results suggest that OC-STAMP is a promising target for the development of a novel bone regenerative therapy and that C12-GD-Spe gel provides a new nanocarrier platform of gene therapies for osteolytic disease.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.S.); (S.N.); (T.K.)
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 605-0981, Japan; (S.-I.S.); (K.A.)
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba 260-8670, Japan
| | - Satoru Shindo
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.S.); (S.N.); (T.K.)
| | - Shin Nakamura
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.S.); (S.N.); (T.K.)
| | - Young M. Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA (N.K.)
| | - Nazanin Kianinejad
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA (N.K.)
| | - Saynur Vardar
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.V.); (M.H.)
| | - Maria Hernandez
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.V.); (M.H.)
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 605-0981, Japan; (S.-I.S.); (K.A.)
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.S.); (S.N.); (T.K.)
| |
Collapse
|
4
|
Smanio Neto H, Moy PK, Martinez EF, Pelegrine AA, Abdalla HB, Clemente-Napimoga JT, Napimoga MH. Sema4D is diminished in leukocyte platelet-rich fibrin and impairs pre-osteoblastic MC3T3-E1 cells' functionality. Arch Oral Biol 2023; 155:105778. [PMID: 37572522 DOI: 10.1016/j.archoralbio.2023.105778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
OBJECTIVE Semaphorin 4D (Sema4D) is a coupling factor expressed on osteoclasts that may hinder osteoblast differentiation. Since the leukocyte platelet-rich fibrin (L-PRF) membrane promotes growth factor concentration, this study aims to quantify the amount of Sema4D in L-PRF membranes, and analyze the impact of Sema4D on osteoblast cell function in vitro. DESIGN Enzyme-linked immunosorbent assay (ELISA) was used to quantify the levels of Sema4D in both L-PRF and whole blood (serum). To analyze the impairment of Sema4D on osteoblasts, MC3T3-E1 cells were induced to osteogenic differentiation and exposed to Sema4D ranging from 10 to 500 ng/ml concentrations. The following parameters were assayed: 1) cell viability by MTT assay after 24, 48, and 72 h; 2) matrix mineralization by Alizarin Red staining after 14 days, 3) Runt-related transcription factor 2 (RUNX-2), osteocalcin (OCN), osteonectin (ONC), bone sialoprotein (BSP) and alkaline phosphatase (ALP) gene expression by qPCR. For all data, the significance level was set at 5%. RESULTS The amount of Sema4D in the whole blood (serum) was higher than in L-PRF. Osteoblasts exposed to Sema4D at all tested concentrations exhibited a decrease in matrix mineralization formation as well in RUNX-2, OCN, ONC, BSP, and ALP gene expression (p < 0.05). CONCLUSION The presence of Sema4D, a molecule known for suppressing osteoblast activity, diminishes within L-PRF, enhancing its ability to facilitate bone regeneration.
Collapse
Affiliation(s)
- Henrique Smanio Neto
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Implantology, Campinas, SP, Brazil
| | - Peter Karyen Moy
- UCLA, Department of Oral & Maxillofacial Surgery, Los Angeles, CA, USA
| | - Elizabeth Ferreira Martinez
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Oral Pathology and Cell Biology, Campinas, SP, Brazil
| | - André Antonio Pelegrine
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Implantology, Campinas, SP, Brazil
| | - Henrique Ballassini Abdalla
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Neuroimmune Interface of Pain Research Lab, Campinas, SP, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Neuroimmune Interface of Pain Research Lab, Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Neuroimmune Interface of Pain Research Lab, Campinas, SP, Brazil.
| |
Collapse
|
5
|
Zhivodernikov IV, Kirichenko TV, Markina YV, Postnov AY, Markin AM. Molecular and Cellular Mechanisms of Osteoporosis. Int J Mol Sci 2023; 24:15772. [PMID: 37958752 PMCID: PMC10648156 DOI: 10.3390/ijms242115772] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Osteoporosis is a widespread systemic disease characterized by a decrease in bone mass and an imbalance of the microarchitecture of bone tissue. Experimental and clinical studies devoted to investigating the main pathogenetic mechanisms of osteoporosis revealed the important role of estrogen deficiency, inflammation, oxidative stress, cellular senescence, and epigenetic factors in the development of bone resorption due to osteoclastogenesis, and decreased mineralization of bone tissue and bone formation due to reduced function of osteoblasts caused by apoptosis and age-depended differentiation of osteoblast precursors into adipocytes. The current review was conducted to describe the basic mechanisms of the development of osteoporosis at molecular and cellular levels and to elucidate the most promising therapeutic strategies of pathogenetic therapy of osteoporosis based on articles cited in PubMed up to September 2023.
Collapse
Affiliation(s)
| | | | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia; (I.V.Z.); (T.V.K.); (A.Y.P.); (A.M.M.)
| | | | | |
Collapse
|
6
|
Cantalupo P, Diacou A, Park S, Soman V, Chen J, Glenn D, Chandran U, Clark D. Single-cell Transcriptional Analysis of the Cellular Immune Response in the Oral Mucosa of Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562816. [PMID: 37904993 PMCID: PMC10614882 DOI: 10.1101/2023.10.18.562816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Periodontal health is dependent on a symbiotic relationship of the host immune response with the oral microbiota. Pathologic shifts of the microbial plaque elicit an immune response that eventually leads to the recruitment and activation of osteoclasts and matrix metalloproteinases and the eventual tissue destruction that is evident in periodontal disease. Once the microbial stimulus is removed, an active process of inflammatory resolution begins. The goal of this work was to use scRNAseq to demonstrate the unique cellular immune response across three distinct conditions of periodontal health, disease, and resolution using mouse models. Periodontal disease was induced using a ligature model. Resolution was modeled by removing the ligature and allowing the mouse to recover. Immune cells (Cd45+) were isolated from the periodontium and analyzed via scRNAseq. Gene signature shifts across the three conditions were characterized and shown to be largely driven by macrophage and neutrophils during the periodontal disease and resolution conditions. Resolution of periodontal disease was characterized by the differential regulation of unique gene subsets. Clustering analysis characterized multiple cellular subpopulations within B Cells, macrophages, and neutrophils that demonstrated differential expansion and contraction across conditions of periodontal health, disease, and resolution. Interestingly, we identified a transcriptionally distinct macrophage subpopulation that expanded during the resolution condition and demonstrated an immunoregulatory gene signature. We identified a cell surface marker for this resolution-associated macrophage subgroup (Cd74) and validated the expansion of this subgroup during resolution via flow cytometry. This work presents a robust immune cell atlas for study of the immunological changes in the oral mucosa during three distinct conditions of periodontal health, disease, and resolution and it improves our understanding of the cellular and molecular markers that characterize health from disease for the development of future diagnostics and therapies.
Collapse
|
7
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
8
|
Zhao J, Li J, Xu A, Xu Y, He F, Mao Y. IRAK4 inhibition: an effective strategy for immunomodulating peri-implant osseointegration via reciprocally-shifted polarization in the monocyte-macrophage lineage cells. BMC Oral Health 2023; 23:265. [PMID: 37158847 PMCID: PMC10169473 DOI: 10.1186/s12903-023-03011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND The biomaterial integration depends on its interaction with the host immune system. Monocyte-macrophage lineage cells are immediately recruited to the implant site, polarized into different phenotypes, and fused into multinucleated cells, thus playing roles in tissue regeneration. IL-1R-associated kinase 4 (IRAK4) inhibition was reported to antagonize inflammatory osteolysis and regulate osteoclasts and foreign body giant cells (FBGCs), which may be a potential target in implant osseointegration. METHODS In in-vitro experiments, we established simulated physiological and inflammatory circumstances in which bone-marrow-derived macrophages were cultured on sand-blasted and acid-etched (SLA) titanium surfaces to evaluate the induced macrophage polarization, multinucleated cells formation, and biological behaviors in the presence or absence of IRAK4i. Then, bone marrow stromal stem cells (BMSCs) were cultured in the conditioned media collected from the aforementioned induced osteoclasts or FBGCs cultures to clarify the indirect coupling effect of multinucleated cells on BMSCs. We further established a rat implantation model, which integrates IRAK4i treatment with implant placement, to verify the positive effect of IRAK4 inhibition on the macrophage polarization, osteoclast differentiation, and ultimately the early peri-implant osseointegration in vivo. RESULTS Under inflammatory conditions, by transforming the monocyte-macrophage lineage cells from M1 to M2, IRAK4i treatment could down-regulate the formation and activity of osteoclast and relieve the inhibition of FBGC generation, thus promoting osteogenic differentiation in BMSCs and improve the osseointegration. CONCLUSION This study may improve our understanding of the function of multinucleated cells and offer IRAK4i as a therapeutic strategy to improve early implant osseointegration and help to eliminate the initial implant failure.
Collapse
Affiliation(s)
- Juan Zhao
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Jia Li
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Antian Xu
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Yangbo Xu
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Fuming He
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China.
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China.
| | - Yingjie Mao
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China.
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China.
| |
Collapse
|
9
|
Shindo S, Pierrelus R, Ikeda A, Nakamura S, Heidari A, Pastore MR, Leon E, Ruiz S, Chheda H, Khatiwala R, Kumagai T, Tolson G, Elderbashy I, Ouhara K, Han X, Hernandez M, Vardar-Sengul S, Shiba H, Kawai T. Extracellular Release of Citrullinated Vimentin Directly Acts on Osteoclasts to Promote Bone Resorption in a Mouse Model of Periodontitis. Cells 2023; 12:1109. [PMID: 37190018 PMCID: PMC10136503 DOI: 10.3390/cells12081109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Elevated osteoclast (OC)-mediated bone resorption, a common pathological feature between periodontitis and rheumatoid arthritis (RA), implicates a possible mutually shared pathogenesis. The autoantibody to citrullinated vimentin (CV), a representative biomarker of RA, is reported to promote osteoclastogenesis (OC-genesis). However, its effect on OC-genesis in the context of periodontitis remains to be elucidated. In an in vitro experiment, the addition of exogenous CV upregulated the development of Tartrate-resistant acid phosphatase (TRAP)-positive multinuclear OCs from mouse bone marrow cells and increased the formation of resorption pits. However, Cl-amidine, an irreversible pan-peptidyl arginine deiminase (PAD) inhibitor, suppressed the production and secretion of CV from RANKL-stimulated OC precursors, suggesting that the citrullination of vimentin occurs in OC precursors. On the other hand, the anti-vimentin neutralizing antibody suppressed in vitro Receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced OC-genesis. The CV-induced upregulation of OC-genesis was abrogated by the Protein kinase C (PKC)-δ inhibitor Rottlerin, accompanied by the downmodulation of OC-genesis-related genes, including Osteoclast stimulatory transmembrane protein (OC-STAMP), TRAP and Matrix Metallopeptidase 9 (MMP9) as well as extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP)-kinase phosphorylation. Elevated levels of soluble CV and vimentin-bearing mononuclear cells were found in the bone resorption lesions of periodontitis induced in mice in the absence of an anti-CV antibody. Finally, local injection of anti-vimentin neutralizing antibody suppressed the periodontal bone loss induced in mice. Collectively, these results indicated that the extracellular release of CV promoted OC-genesis and bone resorption in periodontitis.
Collapse
Affiliation(s)
- Satoru Shindo
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Roodelyne Pierrelus
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Atsushi Ikeda
- Department of Periodontics and Endodontics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Shin Nakamura
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Alireza Heidari
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Maria Rita Pastore
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Elizabeth Leon
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Sunniva Ruiz
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Harsh Chheda
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Rhea Khatiwala
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Tomoki Kumagai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - George Tolson
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Islam Elderbashy
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Xiaozhe Han
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Maria Hernandez
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Saynur Vardar-Sengul
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
10
|
Zeng Y, Wang L, Liu L, Wang M, Yan L, Ye L, Song D, Huang D. The Potential Immunomodulatory Roles of Semaphorin 4D in Human Periapical Lesions. J Endod 2023; 49:62-68. [PMID: 36257402 DOI: 10.1016/j.joen.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Semaphorin 4D (SEMA4D) is an important immunoregulator in the development of inflammatory diseases. Currently, the role of SEMA4D in human apical periodontitis remains unclear. This study aims to investigate the expression of SEMA4D and its potential immunomodulatory roles in apical periodontitis. METHODS A total of 31 periapical tissues and 6 healthy gingival tissues were used in this experiment. Hematoxylin-eosin staining, immunohistochemical staining, and multiplex immunofluorescence staining were performed for histologic examination and immunochemical analysis. For data processing, the number of SEMA4D+, CD4+, CD8+, and CD20+ cells was analyzed by QuPath. In addition, the colocalization of SEMA4D with CD4, CD8, and CD20 was detected. RESULTS Radicular cysts (RCs) (n = 18) and periapical granulomas (PGs) (n = 13) were identified by histologic evaluation. The number of SEMA4D+ cells in PGs was significantly greater than that in RCs (P < .05). T-cell and B-cell infiltration did not differ significantly between RCs and PGs. An increased number of CD20+ cells was observed in both types of apical periodontitis compared to CD8+ cells and CD4+ cells. Additionally, the presence of SEMA4D/CD4 and SEMA4D/CD20 double-positive cells was also markedly higher in PGs than in RCs. CONCLUSION The expression of SEMA4D and related immune cells showed different characteristics between RCs and PGs. The disparate expression patterns indicated the possible different pathologic states of the 2 types of periapical lesions. This study provides a new perspective on the description of the comprehensive microenvironment of periapical lesions.
Collapse
Affiliation(s)
- Yanglin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mudan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lixia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|