1
|
Butenas ALE, Baranczuk AM, Carroll RJ, Parr SK, Ade CJ, Hageman KS, Musch TI, Copp SW. Novel role for purinergic 2× subtype 4 (P2X4) receptors in the exercise pressor reflex and mechanoreflex: Effect of heart failure. Auton Neurosci 2025; 260:103277. [PMID: 40233602 DOI: 10.1016/j.autneu.2025.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/06/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
We investigated the role played by ATP-sensitive purinergic 2 × 4 (P2X4) receptors on the sensory endings of thin fibre muscle afferents in exercise pressor reflex and mechanoreflex activation in healthy/SHAM rats and rats with heart failure with reduced ejection fraction (HF-rEF). We hypothesized that infusion of the P2X4 receptor antagonist 5-BDBD (8 μg) into the hindlimb arterial supply would reduce the mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) responses to 30s of electrically-induced hindlimb skeletal muscle contraction (model of exercise pressor reflex activation) and 30s of hindlimb skeletal muscle stretch (model of mechanoreflex activation) in decerebrate, unanesthetized HF-rEF rats but not SHAM rats. Ejection fraction was significantly lower in HF-rEF (46 ± 3 %) compared to SHAM (83 ± 2 %; P < 0.001) rats. In SHAM rats, P2X4 receptor blockade had no effect on the pressor response to hindlimb muscle contraction (n = 8) or the pressor and RSNA response to muscle stretch (n = 4). However, in SHAM rats we found that P2X4 receptor blockade significantly reduced the RSNA response to muscle contraction. In HF-rEF rats, P2X4 receptor blockade reduced the pressor and RSNA response to hindlimb muscle contraction (n = 7) as well as the pressor, but not the RNSA, response to hindlimb muscle stretch (n = 8). Collectively, the data suggest that P2X4 receptors on thin fibre muscle afferent sensory endings play a role in the evoking the exercise pressor reflex in healthy subjects that is limited to RSNA, and that in HF-rEF this expands to a significant role in mechanoreflex and exercise pressor reflex-mediated blood pressure control.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Ashley M Baranczuk
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Raimi J Carroll
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Shannon K Parr
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States of America
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States of America
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America.
| |
Collapse
|
2
|
Aviani MG, Menard F. Emerging Roles for MFG-E8 in Synapse Elimination. J Neurochem 2025; 169:e70009. [PMID: 39891478 DOI: 10.1111/jnc.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
Synapse elimination is an essential process in the healthy nervous system and is dysregulated in many neuropathologies. Yet, the underlying molecular mechanisms and under what conditions they occur remain unclear. MFG-E8 is a secreted glycoprotein well known to act as an opsonin, tagging stressed and dying cells for engulfment by phagocytes. Opsonization of cells and debris by MFG-E8 for microglial phagocytosis in the CNS is well established, and its role in astrocytic phagocytosis, and trogocytosis-like engulfment of synapses is beginning to be explored. However, MFG-E8's function in other tissues is highly diverse, and evidence suggests that its role in the nervous system and on synapse elimination in particular may be more complex and varied than opsonization. In this review, we outline the documented direct and indirect effects of MFG-E8 on synapse elimination, while also proposing potential roles to be explored further, in particular, cytoskeletal reorganization of neurites and glia leading to synapse elimination by various mechanisms. Finally, we demonstrate the need for several open questions to be answered-chiefly, under what conditions might MFG-E8-mediated synapse elimination occur in favor of other mechanisms, and when might its activity be dysregulated, increasing unwanted synapse elimination and neurotoxicity?
Collapse
Affiliation(s)
- Marisa G Aviani
- Department of Biochemistry and Molecular Biology, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Fred Menard
- Department of Biochemistry and Molecular Biology, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
- Department of Chemistry, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
3
|
Arikan ED, Çimen B, Gezen Yilmaz AE, Akaydin E, Alpay B, Erbaş DE, Nikshiqi E, Müftüoğlu SF, Sara Y. Impact of ivermectin on nerve regeneration following sciatic injury in mice: the consequences of dietary high fructose. Turk J Med Sci 2024; 55:299-312. [PMID: 40104317 PMCID: PMC11913497 DOI: 10.55730/1300-0144.5971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/18/2025] [Accepted: 12/19/2024] [Indexed: 03/20/2025] Open
Abstract
Background/aim Peripheral nerve injuries (PNIs) are debilitating disorders affecting predominantly the younger generation, often leading to significant disabilities. Current treatment strategies are inadequate for addressing the complex nature of these injuries. Peripheral nerve healing and functional recovery are crucial components of both pathophysiology and therapeutic approaches. High fructose corn syrup (HFCS) is a sweetener frequently used in several beverages and foods. It is associated with several metabolic disturbances including insulin resistance and may impair nerve healing. This study investigated the therapeutic role of ivermectin on nerve regeneration following sciatic nerve injury and evaluated motor and sensorial functions together with histopathological evaluation. Additionally, we aimed to compare nerve healing between animals that consume HFCS and those that do not. Materials and methods Forty-eight male Swiss albino mice were randomly divided into six groups, with three consuming HFCS-42 (11% v/v) and the other three regular tap water for 8 weeks. On day 28, sciatic nerve injury (SNI) was caused in all groups. Ivermectin (1 mg/kg) or gabapentin (30 mg/kg) treatments were administered to selected groups. Body weight, blood glucose, motor function (rotarod, open field test), and thermal-mechanical sensorial functions were assessed weekly. Finally, insulin levels were measured and histopathological samples were taken. Results Eight weeks of HFCS consumption impaired mechanical and thermal sensory functions and resulted in histopathologically poor nerve repair. Ivermectin resulted in improved sensorial and faster motor function recovery in the HFCS groups. Elevated plasma insulin levels/HOMA-IR values were diminished by ivermectin in the HFCS groups. In the ivermectin non-HFCS group, histopathology revealed accelerated healing and higher scores in total. Ivermectin also ameliorated mechanical sensation loss after SNI along with cold sensation. Conclusion Ivermectin accelerated sensorial and motor nerve recovery, resulting in faster nerve healing alongside improved insulin resistance, suggesting it might serve as a potential foundation for developing a new treatment for nerve regeneration after injury.
Collapse
Affiliation(s)
- Ezgi Deniz Arikan
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye
| | - Barışcan Çimen
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye
| | - Ayşe Ece Gezen Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye
| | - Elif Akaydin
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye
| | - Berkay Alpay
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye
| | - Deniz Ekin Erbaş
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye
| | - Erblina Nikshiqi
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye
| | - Sevda F Müftüoğlu
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye
| | - Yıldırım Sara
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye
| |
Collapse
|
4
|
Nagel J, Törmäkangas O, Kuokkanen K, El-Tayeb A, Messinger J, Abdelrahman A, Bous C, Schiedel AC, Müller CE. Preparation and preliminary evaluation of a tritium-labeled allosteric P2X4 receptor antagonist. Purinergic Signal 2024; 20:645-656. [PMID: 38795223 PMCID: PMC11555173 DOI: 10.1007/s11302-024-10005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 05/27/2024] Open
Abstract
P2X4 receptors are ATP-gated cation channels that were proposed as novel drug targets due to their role in inflammation and neuropathic pain. Only few potent and selective P2X4 receptor antagonists have been described to date. Labeled tool compounds suitable for P2X4 receptor binding studies are lacking. Here, we present a novel allosteric P2X4 receptor antagonist possessing high potency in the low nanomolar range. We describe its tritium-labeling resulting in the P2X4-selective radiotracer [3H]PSB-OR-2020 with high specific activity (45 Ci/mmol; 1.67 TBq/mmol). A radioligand binding assay was developed using human embryonic kidney (HEK293) cell membranes recombinantly expressing the human P2X4 receptor. Competition binding studies with structurally diverse P2X4 receptor antagonists revealed different allosteric binding sites indicating that the new class of P2X4 receptor antagonists, to which PSB-OR-2020 belongs, interacts with an unprecedented allosteric site. [3H]PSB-OR-2020 may become a useful tool for research on P2X4 receptors and for promoting drug development.
Collapse
Affiliation(s)
- Jessica Nagel
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany
| | - Olli Törmäkangas
- Orion Pharma, Orion Corporation, Tengströminkatu 8, FI-20360 Turku, and Orionintie 1A, Espoo, FI- 02200, Finland
| | - Katja Kuokkanen
- Orion Pharma, Orion Corporation, Tengströminkatu 8, FI-20360 Turku, and Orionintie 1A, Espoo, FI- 02200, Finland
| | - Ali El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany
| | - Josef Messinger
- Orion Pharma, Orion Corporation, Tengströminkatu 8, FI-20360 Turku, and Orionintie 1A, Espoo, FI- 02200, Finland
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany
| | - Christiane Bous
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany
| | - Anke C Schiedel
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany.
| |
Collapse
|
5
|
Pappalardo M, Sipala FM, Nicolosi MC, Guccione S, Ronsisvalle S. Recent Applications of In Silico Approaches for Studying Receptor Mutations Associated with Human Pathologies. Molecules 2024; 29:5349. [PMID: 39598735 PMCID: PMC11596970 DOI: 10.3390/molecules29225349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
In recent years, the advent of computational techniques to predict the potential activity of a drug interacting with a receptor or to predict the structure of unidentified proteins with aberrant characteristics has significantly impacted the field of drug design. We provide a comprehensive review of the current state of in silico approaches and software for investigating the effects of receptor mutations associated with human diseases, focusing on both frequent and rare mutations. The reported techniques include virtual screening, homology modeling, threading, docking, and molecular dynamics. This review clearly shows that it is common for successful studies to integrate different techniques in drug design, with docking and molecular dynamics being the most frequently used techniques. This trend reflects the current emphasis on developing novel therapies for diseases resulting from receptor mutations with the recently discovered AlphaFold algorithm as the driving force.
Collapse
Affiliation(s)
- Matteo Pappalardo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| | - Federica Maria Sipala
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Milena Cristina Nicolosi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Salvatore Guccione
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| |
Collapse
|
6
|
Savio LEB. Editorial - Immunobiophysics: Advances and techniques. J Immunol Methods 2024; 534:113755. [PMID: 39255896 DOI: 10.1016/j.jim.2024.113755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Bala K, Porel P, Aran KR. Emerging roles of cannabinoid receptor CB2 receptor in the central nervous system: therapeutic target for CNS disorders. Psychopharmacology (Berl) 2024; 241:1939-1954. [PMID: 39264450 DOI: 10.1007/s00213-024-06683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
RATIONALE The endocannabinoid system (ECS) belongs to the G protein-coupled receptor family of cell membranes and is associated with neuropsychiatric conditions, and neurodegenerative diseases. Cannabinoid 2 receptors (CB2) are expressed in the central nervous system (CNS) on microglia and subgroups of neurons and are involved in various behavioural processes via immunological and neural regulation. OBJECTIVE The objective of this paper is to summarize and explore the impact of CB2 receptors on neuronal modulation, their involvement in various neurological disorders, and their influence on mood, behavior, and cognitive function. RESULTS The activation of CB2 appears to protect the brain and its functions from damage under neuroinflammatory actions, making it an attractive target in a variety of neurological conditions such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), and Huntington's disease (HD). During inflammation, there is an overexpression of CB2 receptors, and CB2 agonists show a strong anti-inflammatory effect. These results have sparked interest in the CB2 receptors as a potential target for neurodegenerative and neuroinflammatory disease treatment. CONCLUSION In conclusion, CB2 receptors signalling shows promise for developing targeted interventions that could positively affect both immune and neuronal functions, ultimately influencing behavioral outcomes in both health and disease.
Collapse
Affiliation(s)
- Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
8
|
Wei L, Yu X, Chen H, Du Y. The role of P2X4R in regulating CA1 hippocampal synaptic impairment in LPS-induced depression. J Affect Disord 2024; 362:595-605. [PMID: 39019229 DOI: 10.1016/j.jad.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
AIM To study the role of the P2X4 receptor (P2X4R) in regulating hippocampal synaptic impairment in lipopolysaccharide (LPS)-induced depression. METHODS A rat model of depression was established by LPS injection. P2X4R expression was inhibited by 5-(3-bromophenyl)-1, 3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD). Depressive symptoms were identified through behavioral tests. P2X4R and cytokine mRNA levels were measured by qRT-PCR, while synaptic protein levels were measured by Western blotting. Synaptic ultrastructure was assessed by transmission electron microscopy, and the colocalization of brain-derived neurotrophic factor (BDNF) with microglia, astrocytes, and neurons was determined by double immunofluorescence staining. RESULTS Injection of 5-BDBD alleviated LPS-induced depressive symptoms. LPS injection significantly increased the mRNA levels of P2X4R and proinflammatory cytokines in the hippocampus, especially in the CA1 region. The levels of synaptic proteins (BDNF, PSD95, and synapsin I) in the CA1 region were significantly lower than those in the other two regions of the hippocampus, and the synaptic ultrastructure in the hippocampal CA1 region was significantly altered. As expected, the Pearson's correlation R and the overlap coefficient R for the hippocampal colocalization of IBA-1 with BDNF were decreased, and 5-BDBD injection reversed these trends. Injection of 5-BDBD increased hippocampal BDNF mRNA expression. CONCLUSIONS P2X4R may induce synaptic impairment in the hippocampal CA1 region by influencing microglial BDNF expression in the context of LPS-induced depression in rats.
Collapse
Affiliation(s)
- Li Wei
- State Key Laboratory of Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaopeng Yu
- State Key Laboratory of Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- NHC Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yupeng Du
- Department of Rehabilitation, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
9
|
Mian MU, Afzal M, Butt AA, Ijaz M, Khalil K, Abbasi M, Fatima M, Asif M, Nadeem S, Jha S, Panjiyar BK. Neuropharmacology of Neuropathic Pain: A Systematic Review. Cureus 2024; 16:e69028. [PMID: 39385859 PMCID: PMC11464095 DOI: 10.7759/cureus.69028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Neuropathic pain, a debilitating condition, remains challenging to manage effectively. An insight into neuropharmacological mechanisms is critical for optimizing treatment strategies. This systematic review aims to evaluate the role of neuropharmacological agents based on their efficacy, involved neurotransmitters, and receptors. A manual literature search was undertaken in PubMed including Medline, Cochrane Library, Google Scholar, Plos One, Science Direct, and clinicaltrials.gov from 2013 until 2023. Out of the 13 included studies, seven evaluated the role of gabapentinoids. Two main drugs from this group, gabapentin and pregabalin, function by binding voltage-gated calcium channels, lowering neuronal hyperexcitability and pain signal transmission, thereby relieving neuropathic pain. Four of the pooled studies reported the use of tricyclic antidepressants (TCAs) including amitriptyline and nortriptyline which work by blocking the reuptake of norepinephrine and serotonin, their increased concentration is thought to be central to their analgesic effect. Three articles assessed the use of serotonin-norepinephrine reuptake inhibitors (SNRIs) and reported them as effective as the TCAs in managing neuropathic pain. They work by augmenting serotonin and norepinephrine. Three studies focused on the use of selective serotonin reuptake inhibitors (SSRIs), modulating their effect by increasing serotonin levels; however, they were reported as not a highly effective treatment option for neuropathic pain. One of the studies outlined the use of cannabinoids for neuropathic pain by binding to cannabinoid receptors with only mild adverse effects. It is concluded that gabapentinoids, TCAs, and SNRIs were reported as the most effective therapy for neuropathic pain; however, for trigeminal neuralgia, anticonvulsants like carbamazepine were considered the most effective. Opioids were considered second-line drugs for neuropathic pain as they come with adverse effects and a risk of dependence. Ongoing research is exploring novel drugs like ion channels and agents modulating pain pathways for neuropathic pain management. Our review hopes to inspire further research into patient stratification by their physiology, aiding quicker and more accurate management of neuropathic pain while minimizing inadvertent side effects.
Collapse
Affiliation(s)
| | - Mishal Afzal
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Aqsa A Butt
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Muniba Ijaz
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Kashaf Khalil
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | | | - Marhaba Fatima
- Internal Medicine, People's University of Medical and Health Sciences for Women-Nawabshah, Nawabshah, PAK
| | - Mariam Asif
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Saad Nadeem
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Shivangi Jha
- Obstetrics and Gynaecology, Pramukh Swami Medical College, Bhaikaka University, Anand, IND
| | - Binay K Panjiyar
- Cardiology/Global Clinical Scholars Research Training, Harvard Medical School, Boston, USA
| |
Collapse
|
10
|
Cui BC, Aksenova M, Sikirzhytskaya A, Odhiambo D, Korunova E, Sikirzhytski V, Ji H, Altomare D, Broude E, Frizzell N, Booze R, Wyatt MD, Shtutman M. Suppression of HIV-TAT and cocaine-induced neurotoxicity and inflammation by cell penetrable itaconate esters. J Neurovirol 2024; 30:337-352. [PMID: 38884890 PMCID: PMC11512888 DOI: 10.1007/s13365-024-01216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
HIV-associated neurological disorder (HAND) is a serious complication of HIV infection marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of HIV and cocaine-induced transcriptomes in primary cortical cultures revealed significant overexpression of the macrophage-specific gene aconitate decarboxylase 1 (Acod1). The ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. Itaconate then facilitates cytokine production and activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. However, the immunometabolic function of itaconate was unexplored in HIV and cocaine-exposed microglia. We assessed the potential of 4-octyl-itaconate (4OI), a cell-penetrable ester form of itaconate known for its anti-inflammatory properties. When primary cortical cultures exposed to Tat and cocaine were treated with 4OI, microglial cell number increased and the morphological altercations induced by Tat and cocaine were reversed. Microglial cells also appeared more ramified, resembling the quiescent microglia. 4OI treatment inhibited secretion of the proinflammatory cytokines IL-1α, IL-1β, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling determined that Nrf2 target genes were significantly activated in Tat and 4OI treated cultures relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development to treat HAND coupled with CUD comorbidities.
Collapse
Affiliation(s)
- B Celia Cui
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Marina Aksenova
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Aliaksandra Sikirzhytskaya
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diana Odhiambo
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Elizaveta Korunova
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Eugenia Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29208, USA
| | - Rosemarie Booze
- Department of Psychology, College of Arts and Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
11
|
Mei SY, Zhang N, Wang MJ, Lv PR, Liu Q. Microglial purinergic signaling in Alzheimer's disease. Purinergic Signal 2024:10.1007/s11302-024-10029-8. [PMID: 38910192 DOI: 10.1007/s11302-024-10029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of β-amyloid (Aβ) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y2, P2Y6, P2Y12, and P2Y13. The adenosine P1 receptors expressed in microglia include A1R, A2AR, and A2BR. Among them, the activation of P2X4, P2X7, and adenosine A1, A2A receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y2, P2Y6, P2Y12, and P2Y13 receptors expressed by microglia can induce neuroprotective effects. However, A1R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aβ production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.
Collapse
Affiliation(s)
- Shu-Ya Mei
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Ning Zhang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Meng-Jing Wang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Pei-Ran Lv
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| | - Qi Liu
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| |
Collapse
|
12
|
Sluyter R, McEwan TBD, Sophocleous RA, Stokes L. Methods for studying P2X4 receptor ion channels in immune cells. J Immunol Methods 2024; 526:113626. [PMID: 38311008 DOI: 10.1016/j.jim.2024.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
The P2X4 receptor is a trimeric ligand-gated ion channel activated by adenosine 5'-triphosphate (ATP). P2X4 is present in immune cells with emerging roles in inflammation and immunity, and related disorders. This review aims to provide an overview of the methods commonly used to study P2X4 in immune cells, focusing on those methods used to assess P2RX4 gene expression, the presence of the P2X4 protein, and P2X4 ion channel activity in these cells from humans, dogs, mice and rats. P2RX4 gene expression in immune cells is commonly assessed using semi-quantitative and quantitative reverse-transcriptase-PCR. The presence of P2X4 protein in immune cells is mainly assessed using anti-P2X4 polyclonal antibodies with immunoblotting or immunochemistry, but the use of these antibodies, as well as monoclonal antibodies and nanobodies to detect P2X4 with flow cytometry is increasing. Notably, use of an anti-P2X4 monoclonal antibody and flow cytometry has revealed that P2X4 is present on immune cells with a rank order of expression in eosinophils, then neutrophils and monocytes, then basophils and B cells, and finally T cells. P2X4 ion channel activity has been assessed mainly by Ca2+ flux assays using the cell permeable Ca2+-sensitive dyes Fura-2 and Fluo-4 with fluorescence microscopy, spectrophotometry, or flow cytometry. However, other methods including electrophysiology, and fluorescence assays measuring Na+ flux (using sodium green tetra-acetate) and dye uptake (using YO-PRO-12+) have been applied. Collectively, these methods have demonstrated the presence of functional P2X4 in monocytes and macrophages, microglia, eosinophils, mast cells and CD4+ T cells, with other evidence suggestive of functional P2X4 in dendritic cells, neutrophils, B cells and CD8+ T cells.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Tahnee B-D McEwan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
13
|
Puopolo T, Cai A, Liu C, Ma H, Seeram NP. Investigating cannabinoids as P2X purinoreceptor 4 ligands by using surface plasmon resonance and computational docking. Heliyon 2023; 9:e21265. [PMID: 37920520 PMCID: PMC10618793 DOI: 10.1016/j.heliyon.2023.e21265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
P2X purinoceptor 4 (P2X4) is an ATP-gated ion channel receptor with diverse neurophysiological functions, and P2X4 modulators hold promise as potential therapeutics for neuropathic pain, neuroinflammation, and neurodegenerative diseases. While several cannabinoids have been reported as modulators of purinoreceptors, their specific purinoreceptor-binding characteristics remain elusive. In this study, we established a comprehensive workflow that included a binding screening platform and a novel surface plasmon resonance (SPR) competitive assay, complemented by computational docking, to identify potential P2X4 binders among a panel of twenty-eight cannabinoids. Through SPR, we determined the binding affinities of cannabinoids (KD values ranging from 3.4 × 10-4 M to 1 × 10-6 M), along with two known P2X4 antagonists, BX430 (KD = 4.5 × 10-6 M) and 5-BDBD (KD = 7.8 × 10-6 M). The competitive SPR assay validated that BX430 and 5-BDBD acted as non-competitive binders with P2X4. In the following competitive assays, two cannabinoids including cannabidiol (CBD) and cannabivarin (CBV) were identified as competitive P2X4-binders with 5-BDBD, while the remaining cannabinoids exhibited non-competitive binding with either BX430 or 5-BDBD. Our molecular docking experiments further supported these findings, demonstrating that both CBD and CBV shared identical binding sites with residues in the 5-BDBD binding pocket on P2X4. In conclusion, this study provides valuable insights into the P2X4-binding affinity of cannabinoids through SPR and sheds light on the interactions between cannabinoids (CBD and CBV) and P2X4.
Collapse
Affiliation(s)
- Tess Puopolo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ang Cai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
14
|
Cui BC, Aksenova M, Sikirzhytskaya A, Odhiambo D, Korunova E, Sikirzhytski V, Ji H, Altomare D, Broude E, Frizzell N, Booze R, Wyatt MD, Shtutman M. Suppression of HIV and cocaine-induced neurotoxicity and inflammation by cell penetrable itaconate esters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559154. [PMID: 37808776 PMCID: PMC10557618 DOI: 10.1101/2023.09.25.559154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
HIV-associated neurological disorder (HAND) is a serious complication of HIV infection, marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for effective therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of the HIV and cocaine-induced transcriptomes in primary cortical cultures revealed a significant overexpression of the macrophage-specific gene, aconitate decarboxylase 1 (Acod1), caused by the combined insults of HIV and cocaine. ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. The itaconate produced facilitates cytokine production and subsequently activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. While the role of itaconate' in limiting inflammation has been studied in peripheral macrophages, its immunometabolic function remains unexplored in HIV and cocaine-exposed microglia. We assessed in this model system the potential of 4-octyl-itaconate (4OI), a cell-penetrable esterified form of itaconate known for its potent anti-inflammatory properties and potential therapeutic applications. We administered 4OI to primary cortical cultures exposed to Tat and cocaine. 4OI treatment increased the number of microglial cells in both untreated and Tat±Cocaine-treated cultures and also reversed the morphological altercations induced by Tat and cocaine. In the presence of 4OI, microglial cells also appeared more ramified, resembling the quiescent microglia. Consistent with these results, 4OI treatment inhibited the secretion of the proinflammatory cytokines IL-1α, IL-1β, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling further determined that Nrf2 target genes such as NAD(P)H quinone oxidoreductase 1 (Nqo1), Glutathione S-transferase Pi (Gstp1), and glutamate cysteine ligase catalytic (Gclc), were most significantly activated in Tat-4OI treated cultures, relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development aimed at addressing HAND coupled with CUD comorbidities.
Collapse
Affiliation(s)
- B. Celia Cui
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Marina Aksenova
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Aliaksandra Sikirzhytskaya
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Diana Odhiambo
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Elizaveta Korunova
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Vitali Sikirzhytski
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Hao Ji
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Diego Altomare
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Eugenia Broude
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Rosemarie Booze
- Department of Psychology, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Michael D. Wyatt
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael Shtutman
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
15
|
Sophocleous RA, Sluyter R. From dolphins to dogs: new opportunities to understand the role of P2X4 receptors in spinal cord injury and neuropathic pain. Neural Regen Res 2023; 18:1497-1498. [PMID: 36571351 PMCID: PMC10075128 DOI: 10.4103/1673-5374.360294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Reece A Sophocleous
- Illawarra Health and Medical Research Institute; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Jacobson KA, Pradhan B, Wen Z, Pramanik A. New paradigms in purinergic receptor ligand discovery. Neuropharmacology 2023; 230:109503. [PMID: 36921890 PMCID: PMC10233512 DOI: 10.1016/j.neuropharm.2023.109503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
The discovery and clinical implementation of modulators of adenosine, P2Y and P2X receptors (comprising nineteen subtypes) have progressed dramatically in ∼50 years since Burnstock's definition of purinergic signaling. Although most clinical trials of selective ligands (agonists and antagonists) of certain purinergic receptors failed, there is a renewed impetus to redirect efforts to new disease conditions and the discovery of more selective or targeted compounds with potentially reduced side effects, such as biased GPCR agonists. The elucidation of new receptor and enzyme structures is steering rational design of potent and selective agonists, antagonists, allosteric modulators and inhibitors. A2A adenosine receptor (AR) antagonists are being applied to neurodegenerative conditions and cancer immunotherapy. A3AR agonists have potential for treating chronic inflammation (e.g. psoriasis), stroke and pain, as well as cancer. P2YR modulators are being considered for treating inflammation, metabolic disorders, acute kidney injury, cancer, pain and other conditions, often with an immune mechanism. ADP-activated P2Y12R antagonists are widely used as antithrombotic drugs, while their repurposing toward neuroinflammation is considered. P2X3 antagonists have been in clinical trials for chronic cough. P2X7 antagonists have been in clinical trials for inflammatory diseases and depression (compounds that penetrate the blood-brain barrier). Thus, purinergic signaling is now recognized as an immense regulatory system in the body for rebalancing tissues and organs under stress, which can be adjusted by drug intervention for therapeutic purposes. The lack of success of many previous clinical trials can be overcome given more advanced pharmacokinetic and pharmacodynamic approaches, including structure-based drug design, prodrugs and biased signaling. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Balaram Pradhan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Zhiwei Wen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Asmita Pramanik
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Sluyter R. Purinergic Signalling in Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24119196. [PMID: 37298149 DOI: 10.3390/ijms24119196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Since its inception by the late Geoffrey Burnstock in the early 1970s [...].
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
18
|
Hu Q, Li G. Role of purinergic receptors in cardiac sympathetic nerve injury in diabetes mellitus. Neuropharmacology 2023; 226:109406. [PMID: 36586475 DOI: 10.1016/j.neuropharm.2022.109406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Diabetic cardiac autonomic neuropathy is a common and serious chronic complication of diabetes, which can lead to sympathetic and parasympathetic nerve imbalance and a relative excitation of the sympathetic nerve. Purinergic receptors play a crucial role in this process. Diabetic cardiac sympathetic nerve injury affects the expression of purinergic receptors, and activated purinergic receptors affect the phosphorylation of different signaling pathways and the regulation of inflammatory processes. This paper introduces the abnormal changes of sympathetic nerve in diabetes mellitus and summarizes the recently published studies on the role of several purinergic receptor subtypes in diabetic cardiac sympathetic nerve injury. These studies suggest that purinergic receptors as novel drug targets are of great significance for the treatment of diabetic autonomic neuropathy. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
19
|
Sluyter R, Sophocleous RA, Stokes L. P2X receptors: Insights from the study of the domestic dog. Neuropharmacology 2023; 224:109358. [PMID: 36464207 DOI: 10.1016/j.neuropharm.2022.109358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Fifty years ago, the late Geoffrey Burnstock described the concept of purinergic nerves and transmission bringing into existence the broader concepts of purinergic signaling including P2X receptors. These receptors are trimeric ligand-gated cation channels activated by extracellular adenosine 5'-triphosphate (ATP). P2X receptors have important roles in health and disease and continue to gain interest as potential therapeutic targets in inflammatory, neurological, cardiovascular and many other disorders including cancer. Current understanding of P2X receptors has largely arisen from the study of these receptors in humans and rodents, but additional insights have been obtained from the study of P2X receptors in the domestic dog, Canis familiaris. This review article will briefly introduce purinergic signaling and P2X receptors, before detailing the pharmacological profiles of the two recombinant canine P2X receptors studied to date, P2X7 and P2X4. The article will then describe the current state of knowledge concerning the distribution and function of the P2X receptor family in dogs. The article will also discuss the characterization of single nucleotide polymorphisms in the canine P2RX7 gene, and contrast this variation to the canine P2RX4 gene, which is largely conserved between dogs. Finally, this article will outline published examples of the use of dogs to study the pharmacokinetics of P2X7 and P2X3 antagonists, and how they have contributed to the preclinical testing of antagonists to human P2X7, CE-224,535, and human P2X3, Gefapixant (AF-219, MK-7264) and Eliapixant (BAY, 1817080), with Gefapixant gaining recent approval for use in the treatment of refractory chronic cough in humans. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Reece A Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
20
|
Khairullin AE, Grishin SN, Ziganshin AU. P2 Receptor Signaling in Motor Units in Muscular Dystrophy. Int J Mol Sci 2023; 24:1587. [PMID: 36675094 PMCID: PMC9865441 DOI: 10.3390/ijms24021587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purine signaling system is represented by purine and pyrimidine nucleotides and nucleosides that exert their effects through the adenosine, P2X and P2Y receptor families. It is known that, under physiological conditions, P2 receptors play only a minor role in modulating the functions of cells and systems; however, their role significantly increases under some pathophysiological conditions, such as stress, ischemia or hypothermia, when they can play a dominant role as a signaling molecule. The diversity of P2 receptors and their wide distribution in the body make them very attractive as a target for the pharmacological action of drugs with a new mechanism of action. The review is devoted to the involvement of P2 signaling in the development of pathologies associated with a loss of muscle mass. The contribution of adenosine triphosphate (ATP) as a signal molecule in the pathogenesis of a number of muscular dystrophies (Duchenne, Becker and limb girdle muscular dystrophy 2B) is considered. To understand the processes involving the purinergic system, the role of the ATP and P2 receptors in several models associated with skeletal muscle degradation is also discussed.
Collapse
Affiliation(s)
- Adel E. Khairullin
- Department of Biochemistry, Kazan State Medical University, 420012 Kazan, Russia
- Research Laboratory of Mechanobiology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey N. Grishin
- Department of Medicinal Physics, Kazan State Medical University, 420012 Kazan, Russia
| | - Ayrat U. Ziganshin
- Department of Pharmacology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
21
|
Drug repurposing – A search for novel therapy for the treatment of diabetic neuropathy. Biomed Pharmacother 2022; 156:113846. [DOI: 10.1016/j.biopha.2022.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
|
22
|
6-Furopyridine Hexamethylene Amiloride Is a Non-Selective P2X7 Receptor Antagonist. Biomolecules 2022; 12:biom12091309. [PMID: 36139148 PMCID: PMC9496321 DOI: 10.3390/biom12091309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
P2X7 is an extracellular adenosine 5′-triphopshate (ATP)-gated cation channel present on leukocytes, where its activation induces pro-inflammatory cytokine release and ectodomain shedding of cell surface molecules. Human P2X7 can be partially inhibited by amiloride and its derivatives at micromolar concentrations. This study aimed to screen a library of compounds derived from amiloride or its derivative 5-(N,N-hexamethylene) amiloride (HMA) to identify a potential P2X7 antagonist. 6-Furopyridine HMA (6-FPHMA) was identified as a novel P2X7 antagonist and was characterized further. 6-FPHMA impaired ATP-induced dye uptake into human RPMI8226 multiple myeloma cells and human P2X7-HEK293 cells, in a concentration-dependent, non-competitive manner. Likewise, 6-FPHMA blocked ATP-induced Ca2+ fluxes in human P2X7-HEK293 cells in a concentration-dependent, non-competitive manner. 6-FPHMA inhibited ATP-induced dye uptake into human T cells, and interleukin-1β release within human blood and CD23 shedding from RPMI8226 cells. 6-FPHMA also impaired ATP-induced dye uptake into murine P2X7- and canine P2X7-HEK293 cells. However, 6-FPHMA impaired ATP-induced Ca2+ fluxes in human P2X4-HEK293 cells and non-transfected HEK293 cells, which express native P2Y1, P2Y2 and P2Y4. In conclusion, 6-FPHMA inhibits P2X7 from multiple species. Its poor selectivity excludes its use as a specific P2X7 antagonist, but further study of amiloride derivatives as P2 receptor antagonists is warranted.
Collapse
|