1
|
Felicia Aswathy Waliaveettil, Anila EI. Chitosan stabilized platinum nanoparticles: In vitro and in vivo screening for analgesic and anti-inflammatory applications. Int J Biol Macromol 2025; 307:142103. [PMID: 40089246 DOI: 10.1016/j.ijbiomac.2025.142103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
In this interdisciplinary research work, the chitosan stabilized platinum nanoparticles are synthesized through the wet chemical method, and the structural, surface morphological, and optical characterizations are done using X-ray crystallography, Raman spectroscopy, transmission electron microscopy, etc. The samples were tested in in vitro trials namely egg albumin denaturation assay and DPPH radical scavenging assays and showed significantly lower effective concentrations (EC50) such as 5.44 μg/ml and 8.068 μg/ml respectively. The in vitro experiments were followed by in vivo animal model for analgesic and anti-inflammatory behaviour at two doses of 25 mg/kg and 50 mg/kg utilizing the hot plate method and the carrageenan-induced paw edema model respectively. The in vivo hot plate model for analgesic effect demonstrated that the chitosan stabilized platinum nanoparticles perform exceptionally well and show >90 % analgesia (p < 0.01) by extending the reaction time in the hot plate method-indicating better analgesia. Carrageenan-induced paw edema model demonstrated the exceptional anti-inflammatory ability of chitosan-stabilized platinum nanoparticles. Despite being given at a comparatively lower dosage, chitosan stabilized platinum nanoparticles showed a considerable decrease in paw volume (40-45 % edema inhibition) by the third hour of the anti-inflammatory experimentation (p < 0.01) outperforming the standard drug aspirin given at 100 mg/kg.
Collapse
Affiliation(s)
| | - E I Anila
- Department of Physics and Electronics, CHRIST University, Bengaluru, Karnataka 560029, India.
| |
Collapse
|
2
|
Kulka-Kamińska K, Kurzawa M, Sionkowska A. Films Based on Chitosan/Konjac Glucomannan Blend Containing Resveratrol for Potential Skin Application. MATERIALS (BASEL, SWITZERLAND) 2025; 18:457. [PMID: 39859927 PMCID: PMC11766734 DOI: 10.3390/ma18020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Biopolymers represent a significant class of materials with potential applications in skin care due to their beneficial properties. Resveratrol is a natural substance that exhibits a range of biological activities, including the scavenging of free radicals and anti-inflammatory and anti-aging effects. In this study, chitosan/konjac glucomannan resveratrol-enriched thin films were prepared. The enrichment of biomaterials with active ingredients is a common practice, as it allows the desired properties to be obtained in the final product. To characterize the films, several analyses were performed, including infrared spectroscopy, imaging of the samples by SEM and AFM techniques, swelling analysis in pH 5.5 and 7.4, mechanical and antioxidant assays, contact angle measurements, and determination of the resveratrol release profile under the skin mimicking conditions. Resveratrol incorporation into the matrices resulted in modifications to the chemical structure and film morphology. The mechanical characteristics of films with additives were found to undergo deterioration. The sample containing 10% of resveratrol exhibited a higher swelling degree than other films. The resveratrol-modified films demonstrated a notable antioxidant capacity, a reduced contact angle, and enhanced wettability. The resveratrol release occurred rapidly initially, with a maximum of 84% and 56% of the substance released depending on the sample type. Thus, the proposed formulations have promising properties, in particular good swelling capacity, high antioxidant potential, and improved wettability, and may serve as skin dressings after further investigation.
Collapse
Affiliation(s)
- Karolina Kulka-Kamińska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland
| |
Collapse
|
3
|
Benali Y, Mabrouki N, Agougui H, Jabli M, Majdoub H, Predoi D, Ciobanu S, Iconaru SL, Ţălu Ş, Boughzala K. A new porous composite hydroxyapatite/chitosan/microcrystalline-cellulose: synthesis, characterization and application to the adsorption of Eriochrome Black T. Polym Bull (Berl) 2024; 81:16875-16902. [DOI: 10.1007/s00289-024-05496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 12/06/2024]
|
4
|
Mansur AAP, Carvalho SM, Brito RMDM, Capanema NSV, Duval IDB, Cardozo ME, Rihs JBR, Lemos GGM, Lima LCD, dos Reys MP, Rodrigues APH, Oliveira LCA, de Sá MA, Cassali GD, Bueno LL, Fujiwara RT, Lobato ZIP, Mansur HS. Arginine-Biofunctionalized Ternary Hydrogel Scaffolds of Carboxymethyl Cellulose-Chitosan-Polyvinyl Alcohol to Deliver Cell Therapy for Wound Healing. Gels 2024; 10:679. [PMID: 39590035 PMCID: PMC11594054 DOI: 10.3390/gels10110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements are still unmet. Hence, in this study, a novel type of biocompatible ternary polymer hybrid hydrogel scaffold was designed and produced through an entirely eco-friendly aqueous process composed of carboxymethyl cellulose, chitosan, and polyvinyl alcohol and chemically cross-linked by citric acid, forming three-dimensional (3D) matrices, which were biofunctionalized with L-arginine (L-Arg) to enhance cellular adhesion. They were applied as bilayer skin biomimetic substitutes based on human-derived cell cultures of fibroblasts and keratinocytes were seeded and grown into their 3D porous structures, producing cell-based bio-responsive hybrid hydrogel scaffolds to assist the wound healing process. The results demonstrated that hydrophilic hybrid cross-linked networks were formed via esterification reactions with the 3D porous microarchitecture promoted by foam templating and freeze-drying. These hybrids presented chemical stability, physicochemical properties, high moisture adsorption capacity, surface properties, and a highly interconnected 3D porous structure well suited for use as a skin substitute in wound healing. Additionally, the surface biofunctionalization of these 3D hydrogel scaffolds with L-arginine through amide bonds had significantly enhanced cellular attachment and proliferation of fibroblast and keratinocyte cultures. Hence, the in vivo results using Hairless mouse models (an immunocompromised strain) confirmed that these responsive bio-hybrid hydrogel scaffolds possess hemocompatibility, bioadhesion, biocompatibility, adhesiveness, biodegradability, and non-inflammatory behavior and are capable of assisting the skin wound healing process.
Collapse
Affiliation(s)
- Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Ramayana M. de M. Brito
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Isabela de B. Duval
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Marcelo E. Cardozo
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - José B. R. Rihs
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Gabriela G. M. Lemos
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Letícia C. D. Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Marina P. dos Reys
- Laboratory of Compared Pathology, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (M.P.d.R.); (G.D.C.)
| | - Ana P. H. Rodrigues
- Chemistry Department, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (A.P.H.R.); (L.C.A.O.)
| | - Luiz C. A. Oliveira
- Chemistry Department, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (A.P.H.R.); (L.C.A.O.)
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Geovanni D. Cassali
- Laboratory of Compared Pathology, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (M.P.d.R.); (G.D.C.)
| | - Lilian L. Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Ricardo T. Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Zelia I. P. Lobato
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil;
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| |
Collapse
|
5
|
Tritean N, Dimitriu L, Dima ȘO, Ghiurea M, Trică B, Nicolae CA, Moraru I, Nicolescu A, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Bioactive Hydrogel Formulation Based on Ferulic Acid-Grafted Nano-Chitosan and Bacterial Nanocellulose Enriched with Selenium Nanoparticles from Kombucha Fermentation. J Funct Biomater 2024; 15:202. [PMID: 39057323 PMCID: PMC11277923 DOI: 10.3390/jfb15070202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Selenium nanoparticles (SeNPs) have specific properties that result from their biosynthesis particularities. Chitosan can prevent pathogenic biofilm development. A wide palette of bacterial nanocellulose (BNC) biological and physical-chemical properties are known. The aim of this study was to develop a hydrogel formulation (SeBNCSFa) based on ferulic acid-grafted chitosan and bacterial nanocellulose (BNC) enriched with SeNPs from Kombucha fermentation (SeNPsK), which could be used as an adjuvant for oral implant integration and other applications. The grafted chitosan and SeBNCSFa were characterized by biochemical and physical-chemical methods. The cell viability and proliferation of HGF-1 gingival fibroblasts were investigated, as well as their in vitro antioxidant activity. The inflammatory response was determined by enzyme-linked immunosorbent assay (ELISA) of the proinflammatory mediators (IL-6, TNF-α, and IL-1β) in cell culture medium. Likewise, the amount of nitric oxide released was measured by the Griess reaction. The antimicrobial activity was also investigated. The grafting degree with ferulic acid was approximately 1.780 ± 0.07% of the total chitosan monomeric units, assuming single-site grafting per monomer. Fourier-transform infrared spectroscopy evidenced a convolution of BNC and grafted chitosan spectra, and X-ray diffraction analysis highlighted an amorphous rearrangement of the diffraction patterns, suggesting multiple interactions. The hydrogel showed a high degree of cytocompatibility, and enhanced antioxidant, anti-inflammatory, and antimicrobial potentials.
Collapse
Affiliation(s)
- Naomi Tritean
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
- Faculty of Biology, University of Bucharest, Spl. Independentei nr. 91-95, Sector 5, 50095 Bucharest, Romania;
| | - Luminița Dimitriu
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Ștefan-Ovidiu Dima
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Marius Ghiurea
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Bogdan Trică
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Cristian-Andi Nicolae
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Ionuț Moraru
- Laboratoarele Medica Srl., Frasinului Str. nr. 11, 075100 Otopeni, Romania;
| | - Alina Nicolescu
- “Petru Poni” Institute for Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania;
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, Spl. Independentei nr. 91-95, Sector 5, 50095 Bucharest, Romania;
| | - Florin Oancea
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Diana Constantinescu-Aruxandei
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| |
Collapse
|
6
|
Nitikornwarakul C, Wangpradid R, Rakkapao N. Impact of Molar Composition on the Functional Properties of Glutinous Rice Starch-Chitosan Blend: Natural-Based Active Coating for Extending Mango Shelf Life. Polymers (Basel) 2024; 16:1375. [PMID: 38794568 PMCID: PMC11124971 DOI: 10.3390/polym16101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates natural-based blends of glutinous rice starch (GRS) and chitosan (CS), varying their molar composition (0:100, 30:70, 50:50, 70:30, and 100:0) to explore their interaction dynamics. Our findings illustrate the versatility of these blends in solution and film forms, offering applications across diverse fields. Our objective is to understand their impact on coatings designed to extend the post-harvest shelf life of mangoes. Results reveal that increasing chitosan content in GRS/CS blends enhances mechanical strength, hydrophobicity, and resistance to Colletotrichum gloeosporioides infection, a common cause of mango anthracnose. These properties overcome limitations of GRS films. Advanced techniques, including FTIR analysis and stereo imaging, confirmed robust interaction between GRS/CS blend films and mango cuticles, improving coverage with higher chitosan content. This comprehensive coverage reduces mango dehydration and respiration, thereby preserving quality and extending shelf life. Coating with a GRS/CS blend containing at least 50% chitosan effectively prevents disease progression and maintains quality over a 10-day storage period, while uncoated mangoes fail to meet quality standards within 2 days. Moreover, increasing the starch proportion in GRS/CS blends enhances film density, optical properties, and reduces reliance on acidic solvents, thereby minimizing undesirable changes in product aroma and taste.
Collapse
Affiliation(s)
- Chawakwan Nitikornwarakul
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand; (C.N.); (R.W.)
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Rodjanawan Wangpradid
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand; (C.N.); (R.W.)
| | - Natthida Rakkapao
- Department of Applied Chemistry, Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand
- Membrane Science and Technology Research Center, Faculty of Science, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand
| |
Collapse
|
7
|
Galotta A, Demir Ö, Marsan O, Sglavo VM, Loca D, Combes C, Locs J. Apatite/Chitosan Composites Formed by Cold Sintering for Drug Delivery and Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:441. [PMID: 38470772 DOI: 10.3390/nano14050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
In the biomedical field, nanocrystalline hydroxyapatite is still one of the most attractive candidates as a bone substitute material due to its analogies with native bone mineral features regarding chemical composition, bioactivity and osteoconductivity. Ion substitution and low crystallinity are also fundamental characteristics of bone apatite, making it metastable, bioresorbable and reactive. In the present work, biomimetic apatite and apatite/chitosan composites were produced by dissolution-precipitation synthesis, using mussel shells as a calcium biogenic source. With an eye on possible bone reconstruction and drug delivery applications, apatite/chitosan composites were loaded with strontium ranelate, an antiosteoporotic drug. Due to the metastability and temperature sensitivity of the produced composites, sintering could be carried out by conventional methods, and therefore, cold sintering was selected for the densification of the materials. The composites were consolidated up to ~90% relative density by applying a uniaxial pressure up to 1.5 GPa at room temperature for 10 min. Both the synthesised powders and cold-sintered samples were characterised from a physical and chemical point of view to demonstrate the effective production of biomimetic apatite/chitosan composites from mussel shells and exclude possible structural changes after sintering. Preliminary in vitro tests were also performed, which revealed a sustained release of strontium ranelate for about 19 days and no cytotoxicity towards human osteoblastic-like cells (MG63) exposed up to 72 h to the drug-containing composite extract.
Collapse
Affiliation(s)
- Anna Galotta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Öznur Demir
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
| | - Olivier Marsan
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, BP 44362, CEDEX 4, 31030 Toulouse, France
| | - Vincenzo M Sglavo
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, BP 44362, CEDEX 4, 31030 Toulouse, France
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
| |
Collapse
|
8
|
Przykaza K, Jurak M, Kalisz G, Mroczka R, Wiącek AE. Characteristics of Hybrid Bioglass-Chitosan Coatings on the Plasma Activated PEEK Polymer. Molecules 2023; 28:molecules28041729. [PMID: 36838717 PMCID: PMC9967460 DOI: 10.3390/molecules28041729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Polyetheretherketone (PEEK) is a biocompatible, chemically and physically stable radiolucent polymer that exhibits a similar elastic modulus to the normal human bone, making it an attractive orthopedic implant material. However, PEEK is biologically inert, preventing strong enough bonding with the surrounding bone tissue when implanted in vivo. Surface modification and composite preparation are the two main strategies for the improvement of the bioactivity of PEEK. In this study, the plasma activated PEEK surfaces with the embedded bioglass, chitosan, and bioglass-chitosan mixed layers applying from the solution dip-coating technique were investigated. The most prominent factors affecting the coating biocompatibility are strictly connected with the composition of its outer surface (its charge and functional groups), hydrophilic-hydrophobic character, wettability and surface free energy, and topography (size of pores/substructures, roughness, stiffness), as well as the personal characteristics of the patient. The obtained surfaces were examined in terms of wettability and surface-free energy changes. Additionally, FTIR (Fourier Transformation Infrared Spectrometry) and SIMS (Secondary Ion Mass Spectrometry) were applied to establish and control the coating composition. Simultaneously the structure of coatings was visualized with the aid of SEM (Scanning Electron Microscopy). Finally, the obtained systems were incubated in SBF (Simulated Body Fluid) to verify the modifications' influence on the bioactivity/biocompatibility of the PEEK surface. Different structures with variable compositions, as well as changes of the wettability, were observed depending on the applied modification. In addition, the incubation in SBF suggested that the bioglass-chitosan ratio influenced the formation of apatite-like structures on the modified PEEK surfaces.
Collapse
Affiliation(s)
- Kacper Przykaza
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Jaczewskiego St. 8b, 20-090 Lublin, Poland
- Correspondence:
| | - Małgorzata Jurak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Grzegorz Kalisz
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki St. 4a, 20-093 Lublin, Poland
| | - Robert Mroczka
- Laboratory of X-ray Optics, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynow St. 1J, 20-708 Lublin, Poland
| | - Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
9
|
Gieroba B, Kalisz G, Krysa M, Khalavka M, Przekora A. Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process. Int J Mol Sci 2023; 24:ijms24032630. [PMID: 36768949 PMCID: PMC9916414 DOI: 10.3390/ijms24032630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Polysaccharides are one of the most abundant natural polymers and their molecular structure influences many crucial characteristics-inter alia hydrophobicity, mechanical, and physicochemical properties. Vibrational spectroscopic techniques, such as infrared (IR) and Raman spectroscopies are excellent tools to study their arrangement during polymerization and cross-linking processes. This review paper summarizes the application of the above-mentioned analytical methods to track the structure of natural polysaccharides, such as cellulose, hemicellulose, glucan, starch, chitosan, dextran, and their derivatives, which affects their industrial and medical use.
Collapse
Affiliation(s)
- Barbara Gieroba
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
- Correspondence:
| | - Grzegorz Kalisz
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| | - Mikolaj Krysa
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| | - Maryna Khalavka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
- Department of Industrial Technology of Drugs, National University of Pharmacy, Pushkins’ka 63 Street, 61002 Kharkiv, Ukraine
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Bikmurzin R, Bandzevičiūtė R, Maršalka A, Maneikis A, Kalėdienė L. FT-IR Method Limitations for β-Glucan Analysis. Molecules 2022; 27:molecules27144616. [PMID: 35889491 PMCID: PMC9318380 DOI: 10.3390/molecules27144616] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are known as biological response modifiers. However, different sources can result in structural differences and as a result differences in their biological activity. The hot water extraction method allows to obtain, high molecular weight β-glucans without altering their structure by using strong chemicals, such as alkalis or acids. Analysis of β-glucans by FT-IR and NMR spectroscopy in solid state is superior to analysis in solution as it allows researchers to study the preserved structure of the extracted polysaccharides. FT-IR spectroscopy was used in this study to make side-by-side comparison analysis of hot water extracted β-glucans from different yeast sources. NMR spectroscopy was used to confirm findings made by FT-IR spectroscopy. Extracted β-glucans exhibit characteristic structure of β-1,3/1,6-linked glucans with noticeable levels of proteins, possibly in a form of oligopeptides, chitin and other impurities. β-glucans obtained from C. guilliermondii, P. pastoris and S. pastorianus exhibited higher protein content. Differences in mannan, chitin and α-glucan content were also observed; however, the species-specific structure of obtained β-glucans could not be confirmed without additional studies. Structural analysis of high molecular weight β-glucans in solid state by FT-IR spectroscopy is difficult or limited due to band intensity changes and overlapping originating from different molecules.
Collapse
Affiliation(s)
- Ruslan Bikmurzin
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania;
- Department of Medical Technology and Dietethics, Faculty of Health Care, Vilnius University of Applied Sciences, Didlaukio str. 45, LT-08303 Vilnius, Lithuania
- Correspondence:
| | - Rimantė Bandzevičiūtė
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; (R.B.); (A.M.)
| | - Arūnas Maršalka
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; (R.B.); (A.M.)
| | - Andrius Maneikis
- Department of Computer Science and Communications Technologies, Vilnius Gediminas Technical University, Saulėtekio av. 11, LT-10221 Vilnius, Lithuania;
| | - Lilija Kalėdienė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|