1
|
Esposito G, Hunashal Y, Percipalle M, Fogolari F, Venit T, Leonchiks A, Gunsalus KC, Piano F, Percipalle P. Assessing nanobody interaction with SARS-CoV-2 Nsp9. PLoS One 2024; 19:e0303839. [PMID: 38758765 PMCID: PMC11101046 DOI: 10.1371/journal.pone.0303839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
The interaction between SARS-CoV-2 non-structural protein Nsp9 and the nanobody 2NSP90 was investigated by NMR spectroscopy using the paramagnetic perturbation methodology PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation). The Nsp9 monomer is an essential component of the replication and transcription complex (RTC) that reproduces the viral gRNA for subsequent propagation. Therefore preventing Nsp9 recruitment in RTC would represent an efficient antiviral strategy that could be applied to different coronaviruses, given the Nsp9 relative invariance. The NMR results were consistent with a previous characterization suggesting a 4:4 Nsp9-to-nanobody stoichiometry with the occurrence of two epitope pairs on each of the Nsp9 units that establish the inter-dimer contacts of Nsp9 tetramer. The oligomerization state of Nsp9 was also analyzed by molecular dynamics simulations and both dimers and tetramers resulted plausible. A different distribution of the mapped epitopes on the tetramer surface with respect to the former 4:4 complex could also be possible, as well as different stoichiometries of the Nsp9-nanobody assemblies such as the 2:2 stoichiometry suggested by the recent crystal structure of the Nsp9 complex with 2NSP23 (PDB ID: 8dqu), a nanobody exhibiting essentially the same affinity as 2NSP90. The experimental NMR evidence, however, ruled out the occurrence in liquid state of the relevant Nsp9 conformational change observed in the same crystal structure.
Collapse
Affiliation(s)
- Gennaro Esposito
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | | | | | - Federico Fogolari
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Udine, Italy
| | - Tomas Venit
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Kristin C. Gunsalus
- Department of Biology and Center Genomics System Biology, NYU, New York, New York, United States of America
- Center Genomics System Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Fabio Piano
- Department of Biology and Center Genomics System Biology, NYU, New York, New York, United States of America
- Center Genomics System Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Piergiorgio Percipalle
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
- Center Genomics System Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
2
|
Zhang C, Liu J, Sui Y, Liu S, Yang M. In silico drug repurposing carvedilol and its metabolites against SARS-CoV-2 infection using molecular docking and molecular dynamic simulation approaches. Sci Rep 2023; 13:21404. [PMID: 38049492 PMCID: PMC10696093 DOI: 10.1038/s41598-023-48398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a significant impact on the economy and public health worldwide. Therapeutic options such as drugs and vaccines for this newly emerged disease are eagerly desired due to the high mortality. Using the U.S. Food and Drug Administration (FDA) approved drugs to treat a new disease or entirely different diseases, in terms of drug repurposing, minimizes the time and cost of drug development compared to the de novo design of a new drug. Drug repurposing also has some other advantages such as reducing safety evaluation to accelerate drug application on time. Carvedilol, a non-selective beta-adrenergic blocker originally designed to treat high blood pressure and manage heart disease, has been shown to impact SARS-CoV-2 infection in clinical observation and basic studies. Here, we applied computer-aided approaches to investigate the possibility of repurposing carvedilol to combat SARS-CoV-2 infection. The molecular mechanisms and potential molecular targets of carvedilol were identified by evaluating the interactions of carvedilol with viral proteins. Additionally, the binding affinities of in vivo metabolites of carvedilol with selected targets were evaluated. The docking scores for carvedilol and its metabolites with RdRp were - 10.0 kcal/mol, - 9.8 kcal/mol (1-hydroxyl carvedilol), - 9.7 kcal/mol (3-hydroxyl carvedilol), - 9.8 kcal/mol (4-hydroxyl carvedilol), - 9.7 kcal/mol (5-hydroxyl carvedilol), - 10.0 kcal/mol (8-hydroxyl carvedilol), and - 10.1 kcal/mol (O-desmethyl carvedilol), respectively. Using the molecular dynamics simulation (100 ns) method, we further confirmed the stability of formed complexes of RNA-dependent RNA polymerase (RdRp) and carvedilol or its metabolites. Finally, the drug-target interaction mechanisms that contribute to the complex were investigated. Overall, this study provides the molecular targets and mechanisms of carvedilol and its metabolites as repurposed drugs to fight against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA
| | - Jiazheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen, 041004, Shanxi, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA.
- NextGen Precision Health Institution, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
3
|
Zhang C, Sui Y, Liu S, Yang M. Anti-Viral Activity of Bioactive Molecules of Silymarin against COVID-19 via In Silico Studies. Pharmaceuticals (Basel) 2023; 16:1479. [PMID: 37895950 PMCID: PMC10610370 DOI: 10.3390/ph16101479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection drove the global coronavirus disease 2019 (COVID-19) pandemic, causing a huge loss of human life and a negative impact on economic development. It is an urgent necessity to explore potential drugs against viruses, such as SARS-CoV-2. Silymarin, a mixture of herb-derived polyphenolic flavonoids extracted from the milk thistle, possesses potent antioxidative, anti-apoptotic, and anti-inflammatory properties. Accumulating research studies have demonstrated the killing activity of silymarin against viruses, such as dengue virus, chikungunya virus, and hepatitis C virus. However, the anti-COVID-19 mechanisms of silymarin remain unclear. In this study, multiple disciplinary approaches and methodologies were applied to evaluate the potential mechanisms of silymarin as an anti-viral agent against SARS-CoV-2 infection. In silico approaches such as molecular docking, network pharmacology, and bioinformatic methods were incorporated to assess the ligand-protein binding properties and analyze the protein-protein interaction network. The DAVID database was used to analyze gene functions, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment. TCMSP and GeneCards were used to identify drug target genes and COVID-19-related genes. Our results revealed that silymarin compounds, such as silybin A/B and silymonin, displayed triplicate functions against SARS-CoV-2 infection, including directly binding with human angiotensin-converting enzyme 2 (ACE2) to inhibit SARS-CoV-2 entry into the host cells, directly binding with viral proteins RdRp and helicase to inhibit viral replication and proliferation, and regulating host immune response to indirectly inhibit viral infection. Specifically, the targets of silymarin molecules in immune regulation were screened out, such as proinflammatory cytokines TNF and IL-6 and cell growth factors VEGFA and EGF. In addition, the molecular mechanism of drug-target protein interaction was investigated, including the binding pockets of drug molecules in human ACE2 and viral proteins, the formation of hydrogen bonds, hydrophobic interactions, and other drug-protein ligand interactions. Finally, the drug-likeness results of candidate molecules passed the criteria for drug screening. Overall, this study demonstrates the molecular mechanism of silymarin molecules against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China;
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Gvozdjáková A, Kucharská J, Rausová Z, Lopéz-Lluch G, Navas P, Palacka P, Bartolčičová B, Sumbalová Z. Effect of Vaccination on Platelet Mitochondrial Bioenergy Function of Patients with Post-Acute COVID-19. Viruses 2023; 15:v15051085. [PMID: 37243171 DOI: 10.3390/v15051085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction and redox cellular imbalance indicate crucial function in COVID-19 pathogenesis. Since 11 March 2020, a global pandemic, health crisis and economic disruption has been caused by SARS-CoV-2 virus. Vaccination is considered one of the most effective strategies for preventing viral infection. We tested the hypothesis that preventive vaccination affects the reduced bioenergetics of platelet mitochondria and the biosynthesis of endogenous coenzyme Q10 (CoQ10) in patients with post-acute COVID-19. MATERIAL AND METHODS 10 vaccinated patients with post-acute COVID-19 (V + PAC19) and 10 unvaccinated patients with post-acute COVID-19 (PAC19) were included in the study. The control group (C) consisted of 16 healthy volunteers. Platelet mitochondrial bioenergy function was determined with HRR method. CoQ10, γ-tocopherol, α-tocopherol and β-carotene were determined by HPLC, TBARS (thiobarbituric acid reactive substances) were determined spectrophotometrically. RESULTS Vaccination protected platelet mitochondrial bioenergy function but not endogenous CoQ10 levels, in patients with post-acute COVID-19. CONCLUSIONS Vaccination against SARS-CoV-2 virus infection prevented the reduction of platelet mitochondrial respiration and energy production. The mechanism of suppression of CoQ10 levels by SARS-CoV-2 virus is not fully known. Methods for the determination of CoQ10 and HRR can be used for monitoring of mitochondrial bioenergetics and targeted therapy of patients with post-acute COVID-19.
Collapse
Affiliation(s)
- Anna Gvozdjáková
- Pharmacobiochemical Laboratory of 3rd Medical Department, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Jarmila Kucharská
- Pharmacobiochemical Laboratory of 3rd Medical Department, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Zuzana Rausová
- Pharmacobiochemical Laboratory of 3rd Medical Department, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Guillermo Lopéz-Lluch
- Centro Andaluz de Biologia del Desarrollo, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-3A and CIBERER, 41013 Seville, Spain
| | - Plácido Navas
- Centro Andaluz de Biologia del Desarrollo, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-3A and CIBERER, 41013 Seville, Spain
| | - Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Barbora Bartolčičová
- Faculty of Civil Engineering, Slovak Technical University, 811 07 Bratislava, Slovakia
| | - Zuzana Sumbalová
- Pharmacobiochemical Laboratory of 3rd Medical Department, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
5
|
Supuran CT. Progress of Section "Biochemistry" in 2022. Int J Mol Sci 2023; 24:ijms24065873. [PMID: 36982946 PMCID: PMC10056791 DOI: 10.3390/ijms24065873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Of more than 16,400 papers published in 2022 in International Journal of Molecular Sciences [...].
Collapse
Affiliation(s)
- Claudiu T Supuran
- Pharmaceutical and Nutraceutical Section, Department of NEUROFARBA, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
6
|
Abbasian MH, Mahmanzar M, Rahimian K, Mahdavi B, Tokhanbigli S, Moradi B, Sisakht MM, Deng Y. Global landscape of SARS-CoV-2 mutations and conserved regions. J Transl Med 2023; 21:152. [PMID: 36841805 PMCID: PMC9958328 DOI: 10.1186/s12967-023-03996-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND At the end of December 2019, a novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been identified in Wuhan, a central city in China, and then spread to every corner of the globe. As of October 8, 2022, the total number of COVID-19 cases had reached over 621 million worldwide, with more than 6.56 million confirmed deaths. Since SARS-CoV-2 genome sequences change due to mutation and recombination, it is pivotal to surveil emerging variants and monitor changes for improving pandemic management. METHODS 10,287,271 SARS-CoV-2 genome sequence samples were downloaded in FASTA format from the GISAID databases from February 24, 2020, to April 2022. Python programming language (version 3.8.0) software was utilized to process FASTA files to identify variants and sequence conservation. The NCBI RefSeq SARS-CoV-2 genome (accession no. NC_045512.2) was considered as the reference sequence. RESULTS Six mutations had more than 50% frequency in global SARS-CoV-2. These mutations include the P323L (99.3%) in NSP12, D614G (97.6) in S, the T492I (70.4) in NSP4, R203M (62.8%) in N, T60A (61.4%) in Orf9b, and P1228L (50.0%) in NSP3. In the SARS-CoV-2 genome, no mutation was observed in more than 90% of nsp11, nsp7, nsp10, nsp9, nsp8, and nsp16 regions. On the other hand, N, nsp3, S, nsp4, nsp12, and M had the maximum rate of mutations. In the S protein, the highest mutation frequency was observed in aa 508-635(0.77%) and aa 381-508 (0.43%). The highest frequency of mutation was observed in aa 66-88 (2.19%), aa 7-14, and aa 164-246 (2.92%) in M, E, and N proteins, respectively. CONCLUSION Therefore, monitoring SARS-CoV-2 proteomic changes and detecting hot spots mutations and conserved regions could be applied to improve the SARS-CoV-2 diagnostic efficiency and design safe and effective vaccines against emerging variants.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammadamin Mahmanzar
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Karim Rahimian
- Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahar Mahdavi
- Department of Computer Science, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Tokhanbigli
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahsa Mollapour Sisakht
- Department of Biochemistry, Erasmus University Medical Center, 2040, 3000 CA, Rotterdam, The Netherlands
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
| |
Collapse
|
7
|
Matsuzaka Y, Yashiro R. Extracellular Vesicle-Based SARS-CoV-2 Vaccine. Vaccines (Basel) 2023; 11:vaccines11030539. [PMID: 36992123 DOI: 10.3390/vaccines11030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Messenger ribonucleic acid (RNA) vaccines are mainly used as SARS-CoV-2 vaccines. Despite several issues concerning storage, stability, effective period, and side effects, viral vector vaccines are widely used for the prevention and treatment of various diseases. Recently, viral vector-encapsulated extracellular vesicles (EVs) have been suggested as useful tools, owing to their safety and ability to escape from neutral antibodies. Herein, we summarize the possible cellular mechanisms underlying EV-based SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, The Institute of Medical Science, Center for Gene and Cell Therapy, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| |
Collapse
|
8
|
Bader W, Delerce J, Aherfi S, La Scola B, Colson P. Quasispecies Analysis of SARS-CoV-2 of 15 Different Lineages during the First Year of the Pandemic Prompts Scratching under the Surface of Consensus Genome Sequences. Int J Mol Sci 2022; 23:15658. [PMID: 36555300 PMCID: PMC9779826 DOI: 10.3390/ijms232415658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The tremendous majority of SARS-CoV-2 genomic data so far neglected intra-host genetic diversity. Here, we studied SARS-CoV-2 quasispecies based on data generated by next-generation sequencing (NGS) of complete genomes. SARS-CoV-2 raw NGS data had been generated for nasopharyngeal samples collected between March 2020 and February 2021 by the Illumina technology on a MiSeq instrument, without prior PCR amplification. To analyze viral quasispecies, we designed and implemented an in-house Excel file (“QuasiS”) that can characterize intra-sample nucleotide diversity along the genomes using data of the mapping of NGS reads. We compared intra-sample genetic diversity and global genetic diversity available from Nextstrain. Hierarchical clustering of all samples based on the intra-sample genetic diversity was performed and visualized with the Morpheus web application. NGS mapping data from 110 SARS-CoV-2-positive respiratory samples characterized by a mean depth of 169 NGS reads/nucleotide position and for which consensus genomes that had been obtained were classified into 15 viral lineages were analyzed. Mean intra-sample nucleotide diversity was 0.21 ± 0.65%, and 5357 positions (17.9%) exhibited significant (>4%) diversity, in ≥2 genomes for 1730 (5.8%) of them. ORF10, spike, and N genes had the highest number of positions exhibiting diversity (0.56%, 0.34%, and 0.24%, respectively). Nine hot spots of intra-sample diversity were identified in the SARS-CoV-2 NSP6, NSP12, ORF8, and N genes. Hierarchical clustering delineated a set of six genomes of different lineages characterized by 920 positions exhibiting intra-sample diversity. In addition, 118 nucleotide positions (0.4%) exhibited diversity at both intra- and inter-patient levels. Overall, the present study illustrates that the SARS-CoV-2 consensus genome sequences are only an incomplete and imperfect representation of the entire viral population infecting a patient, and that quasispecies analysis may allow deciphering more accurately the viral evolutionary pathways.
Collapse
Affiliation(s)
- Wahiba Bader
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Jeremy Delerce
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Sarah Aherfi
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| |
Collapse
|
9
|
Gong SY, Ding S, Benlarbi M, Chen Y, Vézina D, Marchitto L, Beaudoin-Bussières G, Goyette G, Bourassa C, Bo Y, Medjahed H, Levade I, Pazgier M, Côté M, Richard J, Prévost J, Finzi A. Temperature Influences the Interaction between SARS-CoV-2 Spike from Omicron Subvariants and Human ACE2. Viruses 2022; 14:2178. [PMID: 36298733 PMCID: PMC9607596 DOI: 10.3390/v14102178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 continues to infect millions of people worldwide. The subvariants arising from the variant-of-concern (VOC) Omicron include BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4, and BA.5. All possess multiple mutations in their Spike glycoprotein, notably in its immunogenic receptor-binding domain (RBD), and present enhanced viral transmission. The highly mutated Spike glycoproteins from these subvariants present different degrees of resistance to recognition and cross-neutralisation by plasma from previously infected and/or vaccinated individuals. We have recently shown that the temperature affects the interaction between the Spike and its receptor, the angiotensin converting enzyme 2 (ACE2). The affinity of RBD for ACE2 is significantly increased at lower temperatures. However, whether this is also observed with the Spike of Omicron and sub-lineages is not known. Here we show that, similar to other variants, Spikes from Omicron sub-lineages bind better the ACE2 receptor at lower temperatures. Whether this translates into enhanced transmission during the fall and winter seasons remains to be determined.
Collapse
Affiliation(s)
- Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| |
Collapse
|