1
|
Liu Y, Wang C, Li M, Zhu Y, Liu K, Liu Y, Luo M, Zhang C. Natural ingredients in the regulation of abnormal lipid peroxidation: a potential therapy for pulmonary diseases. Front Pharmacol 2024; 15:1507194. [PMID: 39759448 PMCID: PMC11695318 DOI: 10.3389/fphar.2024.1507194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Pulmonary diseases are a major category of diseases that pose a threat to human health. The most common drugs currently used to treat lung diseases are still chemical drugs, but this may lead to drug resistance and damage to healthy organs in the body. Therefore, developing new drugs is an urgent task. Lipid peroxidation is caused by the disruption of redox homeostasis, accumulation of reactive oxygen species (ROS), depletion of glutathione (GSH), and inactivation of glutathione peroxidase 4 (GPX4). Lipid peroxidation is closely related to the occurrence and progression of respiratory diseases, including acute lung injury, asthma, pulmonary fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease, and lung cancer. Natural ingredients have high safety, high availability, and low cost, and can regulate lipid peroxidation through multiple pathways and targets, making them valuable new drugs. This article aims to summarize the pharmacology and mechanism of natural ingredients targeting lipid peroxidation in the treatment of lung diseases. The reviewed data indicate that natural ingredients are a promising anti-lipid peroxidation drug, mainly alleviating lipid peroxidation through the cystine/glutamate antiporter (System Xc -)/GSH/GPX4 axis, Nrf2 pathway, and ROS pathway. In the future, it will still be necessary to further study the mechanisms of natural products in treating pulmonary diseases through lipid peroxidation and conduct multi-center, large-sample clinical trials to promote the development of new drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Gao Y, Sun J, Li W, Deng W, Wang Y, Li X, Yang Z. Sophoraflavanone G: A review of the phytochemistry and pharmacology. Fitoterapia 2024; 177:106080. [PMID: 38901805 DOI: 10.1016/j.fitote.2024.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Bioactive compounds derived from natural sources have long been investigated for the prevention and treatment of human diseases. Sophoraflavanone G (SFG), a lavandulyl flavanone naturally occurring in several Sophora plant species, belongs to the group of prenylated flavonoids that have garnered significant interest in contemporary research. The natural molecule exhibits a wide range of pharmacological properties and shows remarkable efficacy. Its ability to effectively suppress a range of malignant tumor cells, such as leukemia, breast cancer, and lung cancer, is attributed to its multi-target, multi-pathway, and multi-faceted mechanisms of action. Simultaneously, it can also alleviate various inflammatory diseases by mediating inflammatory mediators and molecular pathways. Furthermore, it has the capability to combat antibiotic resistance, exhibit synergistic antibacterial properties with diverse antibiotics, and prevent and treat various agricultural pests. Theoretically, it can bring benefits to human health and has potential value as a drug. Nevertheless, the drawbacks of poor water solubility and inadequate targeting cannot be overlooked. To comprehensively assess the current research on SFG, leverage its structural advantages and pharmacological activity, overcome its low bioavailability limitations, expedite its progression into a novel therapeutic drug, and better serve the clinic, this article presents a overall retrospect of the current research status of SFG. The discussion includes an analysis of the structural characteristics, physicochemical properties, bioavailability, pharmacological activities, and structure-activity relationships of SFG, with the goal of offering valuable insights and guidance for future research endeavors in this field.
Collapse
Affiliation(s)
- Yingying Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, China; Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Weizhe Deng
- Department of Traditional Chinese Medicine, 962 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Xiuyan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Zhixin Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China.
| |
Collapse
|
3
|
Rodwattanagul S, Sasarom M, Riangjanapatee P, Anuchapreeda S, Okonogi S. Antioxidant activity of Sophora exigua and liposome development of its powerful extract. Drug Discov Ther 2024; 18:150-159. [PMID: 38777765 DOI: 10.5582/ddt.2024.01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Sophora exigua (SE) was sequentially extracted using hexane, ethyl acetate, and ethanol. The obtained extracts were tested for antioxidant activity. Among them, the fractionated ethyl acetate extract (SE-EA) showed the highest potential in free radical scavenging and ferric-reducing properties. The chemical analysis identified sophoraflavanone G as one of the active ingredients in SE-EA. According to SE-EA solubility, SE-EA liposomes were developed using a sonication-assisted thin film method. Cholesterol and phospholipids were used as the main compositions of the liposomes. The obtained liposomes were spherical with different nano-size ranges, size distribution, and zeta potential depending on SE-EA and total lipid concentrations. SE-EA liposomes were slightly bigger than their empty liposomes. All liposomes exhibited a phospholipid crystalline structure. Cholesterol and SE-EA existed in the liposomes as an amorphous state. SE-EA liposomes with high total lipid content exhibited high entrapment efficiency and sustained release behavior. Whereas liposomes with low total lipid content showed low entrapment efficiency and fast-release behavior. All SE-EA liposomes showed stronger antioxidant activity than the non-entrapped SE-EA. In conclusion, SE-EA is a natural source of potent antioxidants. The developed SE-EA liposomes are a promising pharmaceutical formulation to efficiently deliver the active ingredients of SE-EA and are suitable for further study in vivo.
Collapse
Affiliation(s)
- Soraya Rodwattanagul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Mathurada Sasarom
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Pornthida Riangjanapatee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Li X, Deng W, Tang K, Zhang S, Liang Z, Liu W, Li Y, Zhang Z, Zhao W, Zou J. Sophoraflavanone G Inhibits RANKL-Induced Osteoclastogenesis via MAPK/NF-κB Signaling Pathway. Mol Biotechnol 2024:10.1007/s12033-024-01185-8. [PMID: 38780825 DOI: 10.1007/s12033-024-01185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Osteoporosis is a common chronic bone metabolism disorder characterized by decreased bone mass and reduced bone density in the bone tissue. Osteoporosis can lead to increased fragility of the skeleton, making it prone to brittle fractures. Osteoclasts are macrophage-like cells derived from hematopoietic stem cells, and their excessive activity in bone resorption leads to lower bone formation than absorption during bone remodeling, which is one of the important factors inducing osteoporosis. Therefore, how to inhibit osteoclast formation and reducing bone loss is an important direction for treating osteoporosis. Sophoraflavanone G, derived from Sophora flavescens Alt and Rhizoma Drynariae, is a flavonoid compound with various biological activities. However, there have been few studies on osteoporosis and osteoclasts so far. Therefore, we hypothesize that genistein G can inhibit osteoclast differentiation, alleviate bone loss phenomenon, and conduct in vitro and in vivo experiments for research and verification purposes.
Collapse
Affiliation(s)
- Xinchun Li
- Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
- Department of Orthopaedic, Hainan Traditional Chinese Medicine Hospital, Hainan City, China
- Department of Orthopaedic, Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan City, 570203, Hainan Province, China
- Department of Orthopaedic, Affiliated Hainan Traditional Chinese Medicine, Hainan City, 570203, Hainan Province, China
| | - Wei Deng
- Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
- Orthopedics Department, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou City, 510405, Guangdong Province, China
| | - Kai Tang
- Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
- Orthopedics Department, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou City, 510405, Guangdong Province, China
| | - Shiyin Zhang
- Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
| | - Zixuan Liang
- Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
| | - Weiwen Liu
- Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
| | - Yongyu Li
- Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China
| | - Zhida Zhang
- Orthopedics Department, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou City, 510405, Guangdong Province, China.
| | - Wenhua Zhao
- Orthopedics Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, 510260, Guangdong Province, China.
| | - Jian Zou
- Orthopedic Spine Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan City, 523005, Guangdong Province, China.
- Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong Province, China.
| |
Collapse
|
5
|
Gu C, Liu Y, Lv J, Zhang C, Huang Z, Jiang Q, Gao Y, Tao T, Su Y, Chen B, Jia R, Liu X, Su W. Kurarinone regulates Th17/Treg balance and ameliorates autoimmune uveitis via Rac1 inhibition. J Adv Res 2024:S2090-1232(24)00113-9. [PMID: 38522752 DOI: 10.1016/j.jare.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION Autoimmune uveitis (AU) is a severe intraocular autoimmune disorder with a chronic disease course and a high rate of blindness. Kurarinone (KU), a major component of the traditional Chinese medicine Sophorae Flavescentis Radix, possesses a wide spectrum of activities and has been used to treat several inflammation-related diseases. OBJECTIVE We aimed to investigate the effects of KU on AU and its modulatory mechanisms. METHODS We used an experimental autoimmune uveitis (EAU) animal model and characterized the comprehensive immune landscape of KU-treated EAU mice using single-cell RNA sequencing (scRNA-seq). The retina and lymph nodes were analyzed. The siRNAs and selective inhibitors were used to study the signaling pathway. The effect of KU on peripheral blood mononuclear cells (PBMCs) from uveitis patients was also examined. RESULTS We found that KU relieved chorioretinal lesions and immune cell infiltration in EAU model mice. Subsequent single-cell analysis revealed that KU downregulated the EAU-upregulated expression of inflammatory and autoimmune-related genes and suppressed pathways associated with immune cell differentiation, activation, and migration in a cell-specific manner. KU was implicated in restoring T helper 17 (Th17)/regulatory T (Treg) cell balance by alleviating inflammatory injury and elevating the expression of modulatory mediators in Tregs, while simultaneously ameliorating excessive inflammation by Th17 cells. Furthermore, Rac1 and the Id2/Pim1 axis potentiated the pathogenicity of Th17 cells during EAU, which was inhibited by KU treatment, contributing to the amelioration of EAU-induced inflammation and treatment of AU. In addition, KU suppressed inflammatory cytokine production in activated human PBMCs by inhibiting Rac1. Integration of the glucocorticoid-treated transcriptome suggests that KU has immunomodulatory effects on lymphocytes. CONCLUSION Our study constructed a high-resolution atlas of the immunoregulatory effects of KU treatment on EAU and identified its potential therapeutic mechanisms, which hold great promise in treating autoimmune disorders.
Collapse
Affiliation(s)
- Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianyu Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuhan Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510060, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
6
|
Shen F, Gao C, Wang M, Ding X, Zhao H, Zhou M, Mao J, Kuai L, Li B, Wang D, Zhang H, Ma X. Therapeutic effects of the Qingre-Qushi recipe on atopic dermatitis through the regulation of gut microbiota and skin inflammation. Heliyon 2024; 10:e26063. [PMID: 38380039 PMCID: PMC10877368 DOI: 10.1016/j.heliyon.2024.e26063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Accumulating evidence has highlighted a strong association between gut microbiota and the occurrence, development, prevention, and treatment of atopic dermatitis (AD). The regulation of gut microbial dysbiosis by oral traditional Chinese medicine (TCM) has garnered significant attention. In the treatment of AD, the TCM formula Qingre-Qushi Recipe (QRQS) has demonstrated clinical efficacy. However, both the therapeutic mechanisms of QRQS and its impact on gut microbiota remain unclear. Thus, our study aimed to assess the efficacy of QRQS and evaluate its influence on the composition and diversity of gut microbiota in AD animal models. First, we investigated the therapeutic effect of QRQS on AD using two animal models: filaggrin-deficient mice (Flaky tail, ft/ft) and MC903-induced AD-like mice. Subsequently, we explored its influence on the composition and diversity of gut microbiota. Our results demonstrated that QRQS treatment ameliorated the symptoms in both ft/ft mice and MC903-induced AD-like mice. It also reduced the levels of serum IgE and pro-inflammatory cytokines, including IL-1β, IL-4, IL-5, IL-9, IL-13, IL-17A, and TNF-α. Furthermore, QRQS remarkably regulated gut microbiota diversity by increasing Lactobacillaceae and decreasing Bacteroidales. The inflammatory factors in peripheral serum of ft/ft mice showed a close correlation with gut microbiota, as determined using the Spearman correlation coefficient. Additionally, PICRUSt analysis revealed an enrichment in ascorbate and aldarate metabolism, fatty acid metabolism and biosynthesis, and propanoate metabolism in the QRQS group compared to the ft/ft group. Finally, we identified liquiritin as the primary active ingredient of QRQS using ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). Our findings revealed that QRQS improved AD-like symptoms and alleviated skin inflammation in ft/ft and MC903-induced mice. This suggests that modulating the gut microbiota may help elucidate its anti-inflammation activation mechanism, highlighting a new therapeutic strategy that targets the intestinal flora to prevent and treat AD.
Collapse
Affiliation(s)
- Fang Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Mingxia Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaojie Ding
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hang Zhao
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Mi Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jingyi Mao
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Le Kuai
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Dongming Wang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huimin Zhang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| |
Collapse
|
7
|
Rajizadeh MA, Najafipour H, Bejeshk MA. An Updated Comprehensive Review of Plants and Herbal Compounds with Antiasthmatic Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:5373117. [PMID: 39263346 PMCID: PMC11390241 DOI: 10.1155/2024/5373117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Accepted: 01/27/2024] [Indexed: 09/13/2024]
Abstract
Background Asthma is a common disease with rising prevalence worldwide, especially in industrialized countries. Current asthma therapy with traditional medicines lacks satisfactory success, hence the patients' search for alternative and complementary treatments for their diseases. Researchers have conducted many studies on plants with antiallergic and antiasthmatic effects in recent decades. Many of these plants are now used in clinics, and searching for their mechanism of action may result in creating new ideas for producing more effective drugs. Purpose The goal of this review was to provide a compilation of the findings on plants and their active agents with experimentally confirmed antiasthmatic effects. Study Design and Method. A literature search was conducted from 1986 to November 2023 in Scopus, Springer Link, EMBASE, Science Direct, PubMed, Google Scholar, and Web of Science to identify and report the accumulated knowledge on herbs and their compounds that may be effective in asthma treatment. Results The results revealed that 58 plants and 32 herbal extracted compounds had antiasthmatic activity. Also, 32 plants were shown to have anti-inflammatory and antioxidative effects or may act as bronchodilators and potentially have antiasthmatic effects, which must be investigated in future studies. Conclusion The ability of herbal medicine to improve asthma symptoms has been confirmed by clinical and preclinical studies, and such compounds may be used as a source for developing new antiasthmatic drugs. Moreover, this review suggests that many bioactive compounds have therapeutic potential against asthma.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Kim HJ, Kim SY, Bae HJ, Choi YY, An JY, Cho YE, Cho SY, Lee SJ, Lee S, Sin M, Yun YM, Lee JR, Park SJ. Anti-Inflammatory Effects of the LK5 Herbal Complex on LPS- and IL-4/IL-13-Stimulated HaCaT Cells and a DNCB-Induced Animal Model of Atopic Dermatitis in BALB/c Mice. Pharmaceutics 2023; 16:40. [PMID: 38258052 PMCID: PMC10821371 DOI: 10.3390/pharmaceutics16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease influenced by a complex interplay of genetic and environmental factors. The activation of the JAK-STAT pathway increases the expression of inflammatory cytokines such as IL-4 and IL-13, further deteriorating AD. Therefore, for the treatment of AD, the JAK-STAT pathway is emerging as a significant target, alongside inflammatory cytokines. This study investigates the potential therapeutic effects of a novel herbal complex, LK5, composed of Scutellaria baicalensis, Liriope platyphylla, Sophora flavescens, Dictammus dasycarpus, and Phellodendron schneider, known for their anti-inflammatory and immune-modulating properties. We examined the anti-inflammatory and anti-AD effects of the LK5 herbal complex in HaCaT cells stimulated by LPS and IL-4/IL-13, as well as in a mouse model of AD induced by DNCB. In HaCaT cells stimulated with LPS or IL-4/IL-13, the LK5 herbal complex demonstrated anti-inflammatory effects by inhibiting the expression of inflammatory cytokines including TNF-α, IL-6, and IL-1β, and downregulating the phosphorylation of STAT proteins. In a murine AD-like model induced by DNCB, administration of the LK5 herbal complex significantly ameliorated clinical symptoms, including dermatitis, ear thickness, and TEWL. Histological analysis revealed a reduction in epidermal thickness and mast cell infiltration. The LK5 herbal complex also inhibited pruritus induced by compound 48/80. Furthermore, the LK5 herbal complex treatment significantly decreased the levels of inflammatory cytokines such as TSLP, IL-6, and IgE in plasma and ear tissue of AD-induced mice. These findings suggest that the LK5 herbal complex may modulate the immune response and alleviate AD symptoms by inhibiting STAT pathways.
Collapse
Affiliation(s)
- Hyun-Jeong Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yu-Yeong Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - Ju-Yeon An
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - Ye Eun Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - So-Young Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - Su-Jung Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - MinSub Sin
- LK Co., Ltd., Hwaseong 18469, Republic of Korea; (M.S.); (Y.M.Y.); (J.R.L.)
| | - Young Min Yun
- LK Co., Ltd., Hwaseong 18469, Republic of Korea; (M.S.); (Y.M.Y.); (J.R.L.)
| | - Jong Ryul Lee
- LK Co., Ltd., Hwaseong 18469, Republic of Korea; (M.S.); (Y.M.Y.); (J.R.L.)
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
9
|
Chen ST, Yang N. Constructing ferroptosis-related competing endogenous RNA networks and exploring potential biomarkers correlated with immune infiltration cells in asthma using combinative bioinformatics strategy. BMC Genomics 2023; 24:294. [PMID: 37259023 DOI: 10.1186/s12864-023-09400-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Asthma is a common chronic respiratory disease worldwide. Recent studies have revealed the critical effects of the ceRNA network and ferroptosis on patients with asthma. Thus, this study aimed to explore the potential ferroptosis-related ceRNA network, investigate the immune cell infiltration level in asthma through integrated analysis of public asthma microarray datasets, and find suitable diagnostic biomarkers for asthma. METHODS First, three asthma-related datasets which were downloaded from the Gene Expression Omnibus (GEO) database were integrated into one pooled dataset after correcting for batch effects. Next, we screened differentially expressed lncRNAs (DElncRNAs) between patients and healthy subjects, constructed a ceRNA network using the StarBase database and screened ferroptosis-related genes from the predicted target mRNAs for Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We also performed Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) on the batch effect-corrected mRNA expression profile. Then, Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to screen potential diagnostic biomarkers, and the diagnostic efficacy was assessed using a receiver operating characteristic (ROC) curve. Finally, we determined the proportion of 22 immune cells in patients with asthma using CIBERSORT and investigated the correlation between key RNAs and immune cells. RESULTS We obtained 19 DElncRNAs, of which only LUCAT1 and MIR222HG had corresponding target miRNAs. The differentially expressed ferroptosis-related genes were involved in multiple programmed cell death-related pathways. We also found that the mRNA expression profile was primarily enriched in innate immune system responses. We screened seven candidate diagnostic biomarkers for asthma using LASSO regression (namely, BCL10, CD300E, IER2, MMP13, OAF, TBC1D3, and TMEM151A), among which the area under the curve (AUC) value for CD300E and IER2 were 0.722 and 0.856, respectively. Finally, we revealed the infiltration ratio of different immune cells in asthma and found a correlation between LUCAT1, MIR222HG, CD300E, and IER2 with some immune cells. CONCLUSION This study explored a potential lncRNA-miRNA-mRNA regulatory network and its underlying diagnostic biomarkers (CD300E and IER2) in asthma and identified the immune cells most associated with them, providing possible diagnostic markers and immunotherapeutic targets for asthma.
Collapse
Affiliation(s)
- Shao-Tian Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Liaoning Province, 110004, Shenyang, China
| | - Nan Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Liaoning Province, 110004, Shenyang, China.
| |
Collapse
|
10
|
Hu J, Sang J, Hao F, Liu L. Association between vitamin A and asthma: A meta-analysis with trial sequential analysis. Front Pharmacol 2023; 14:1100002. [PMID: 36794278 PMCID: PMC9922757 DOI: 10.3389/fphar.2023.1100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
Objective: To explore the association between vitamin A (vit A) status and risk of asthma. Methods: PubMed, Web of Science, Embase and the Cochrane Library were electronically searched to identify related studies that reported the association between vit A status and asthma. All databases were searched from inception to November 2022. Two reviewers independently screened literature, extracted data, and assessed risk bias of included studies. Meta-analysis was performed on R software Version 4.1.2 and STATA Version 12.0. Results: A total of 19 observational studies were included. A pooled analysis showed that the serum vit A concentrations in patients with asthma was lower than that in healthy controls (standard mean difference (SMD)= -2.479, 95% confidence interval (CI): -3.719, -.239, 95% prediction interval (PI): -7.510, 2.552), and relatively higher vit A intake in pregnancy was associated with an increased risk of asthma at age 7 years (risk ratio (RR)= 1.181, 95% CI: 1.048, 1.331). No significant correlation was observed between serum vit A levels or vit A intake and the risk of asthma. Conclusion: Our meta-analysis confirms that serum vit A levels are lower in patients with asthma than in healthy controls. Relatively higher vit A intake during pregnancy is associated with an increased risk of asthma at age 7 years. There is no significant correlation between vit A intake and asthma risk in children, nor between serum vit A levels and asthma risk. The effect of vit A may depend on age or developmental stage, diet and genetics. Therefore, further studies are needed to explore the association of vit A and asthma. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/CRD42022358930, identifier CRD42022358930.
Collapse
Affiliation(s)
- Jun Hu
- College of Acupuncture-Moxibustion and Tuina, College of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiajia Sang
- Department of Tuina, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Feng Hao
- College of Acupuncture-Moxibustion and Tuina, College of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Feng Hao, ; Li Liu,
| | - Li Liu
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China,*Correspondence: Feng Hao, ; Li Liu,
| |
Collapse
|
11
|
Protective Effects of Herba Houttuyniae Aqueous Extract against OVA-Induced Airway Hyperresponsiveness and Inflammation in Asthmatic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7609785. [PMID: 36408342 PMCID: PMC9674414 DOI: 10.1155/2022/7609785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022]
Abstract
Herba Houttuyniae is the well-knownfood-medicine herb with the special taste and smell. It is also widely used in south China for prevention of various chronic pulmonary inflammatory diseases including asthma. However, the active ingredients and therapeutic mechanism of this herb remain obscure. In this study, network pharmacology technology was employed to investigate the effects of Herba Houttuyniae aqueous extract (HHAE) on OVA-induced airway hyperresponsiveness and inflammation. The results showed that six compounds (isoramanone, kaempferol, 1-methyl-2-nonacosyl-4-quinolone, C09747, spinasterol, and quercetin) were found to be mainly responsible for the therapeutic effects of the herb, which totally regulated the expressions of 168 asthma-related proteins. All those targets involved in the signal transduction of the prolactin signaling pathway, central carbon metabolism in cancer, EGFR tyrosine kinase inhibitor resistance, endocrine resistance, and VEGF signaling pathway. The in vivo experiment also revealed that orally administrated with HHAE alleviated airway hyperresponsiveness and inflammation in OVA-induced asthmatic mice. It significantly decreased the counts of neutrophils, eosinophils, and lymphocytes as well as the levels of IL-1β, IL-4, IL-6, and IL-13 in BALF of asthmatic mice. Mechanically, HHAE downregulated both the mRNA and protein expressions of p38 MAPK, PI3K, AKT, and VEGF in the lung tissues of asthmatic mice. Therefore, HHAE improved OVA-induced airway hyperresponsiveness and inflammation in mice and could be a potential supplement for asthma treatment.
Collapse
|
12
|
Anti-Itching and Anti-Inflammatory Effects of Kushenol F via the Inhibition of TSLP Production. Pharmaceuticals (Basel) 2022; 15:ph15111347. [DOI: 10.3390/ph15111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that results from eczema, itching, disrupted barrier function and aberrant cutaneous immune responses. The aim of the present study was to assess the efficacy of kushenol F as an effective treatment for AD via the suppression of thymic stromal lymphopoietin (TSLP) production. The results of the present study demonstrated that the clinical symptoms of AD were less severe and there was reduced ear thickening and scratching behavior in kushenol F-treated Dermatophagoides farinae extract (DFE)/1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD mice. Histopathological analysis demonstrated that kushenol F decreased the DFE/DNCB-induced infiltration of eosinophil and mast cells and TSLP protein expression levels. Furthermore, kushenol F-treated mice exhibited significantly lower concentrations of serum histamine, IgE and IgG2a compared with the DFE/DNCB-induced control mice. Kushenol F also significantly decreased phosphorylated NF-κB and IKK levels and the mRNA expression levels of IL-1β and IL-6 in cytokine combination-induced human keratinocytes. The results of the present study suggested that kushenol F may be a potential therapeutic candidate for the treatment of AD via reducing TSLP levels.
Collapse
|