1
|
Narang T, Mehta H. A comorbidity-centered approach to psoriasis management: reflections and future directions. Int J Dermatol 2024. [PMID: 39668471 DOI: 10.1111/ijd.17606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Tarun Narang
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hitaishi Mehta
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Miyazaki C, Masuda J, Tsai PIC, Saeki H. Factors Affecting Treatment Persistence in Japanese Patients with Psoriasis Prescribed Biologics: A Real-World Study Using an Insurance Claim Database. Dermatol Ther (Heidelb) 2024; 14:2999-3015. [PMID: 39407051 PMCID: PMC11557743 DOI: 10.1007/s13555-024-01274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 11/14/2024] Open
Abstract
INTRODUCTION Poor persistence to biologics can result in suboptimal health outcomes and increased economic burden for chronic conditions, including psoriasis (PsO). In Japan, studies evaluating factors responsible for biologic treatment persistence in patients with PsO are limited. We assessed biologic treatment persistence (median treatment duration and overall treatment survival) and associated factors in patients with PsO in a real-world setting. METHODS This retrospective analysis of insurance claims records from the Japan Medical Data Center (JMDC) database included patients with PsO [International Classification of Diseases (ICD) code: L40.x] ≥ 18 years of age who had received biologic treatment. Treatment persistence was analyzed using data from 2016 to 2020 by biologic class and by individual biologics (infliximab, adalimumab, ustekinumab, guselkumab, secukinumab, ixekizumab, and brodalumab) in bio-naïve (who initiate first biologic at index) and bio-experienced patients. Kaplan-Meier survival (treatment persistence), and multivariate Cox proportional hazard regression (predictive factors) analyses were used. RESULTS Overall, 1528 patients with PsO were included (mean age 47.4 years). Infliximab had the longest median treatment duration (33.6 months), while brodalumab had the shortest (9.7 months) among biologics evaluated. Of the biologics evaluated, 1-year treatment survival was highest with guselkumab (83%), and lowest with brodalumab (45%). Bio-experienced patients showed slightly longer median treatment duration than bio-naïve patients (22.8 versus 18.1 months). Factors predictive of treatment persistence were sex [male; hazard ratio (HR) 0.84, p = 0.016] and specific PsO diagnostic codes, such as L40.0 (PsO vulgaris; HR 0.69; p = 0.006), L40.1 (generalized pustular PsO; HR 0.75; p = 0.034), and L40.9 (PsO unspecified; HR 0.72; p = 0.001). Meanwhile, age and Charlson Comorbidity Index score were significantly associated with adalimumab and infliximab treatment persistence, respectively. CONCLUSION Among biologics evaluated, infliximab had the longest median treatment duration, and guselkumab had the highest 1-year treatment survival. Sex and specific PsO diagnostic codes influenced overall treatment persistence. These findings could inform long-term treatment plans for PsO in real-world clinical settings.
Collapse
Affiliation(s)
- Celine Miyazaki
- Value, Evidence and Access Department, Janssen Pharmaceutical K.K., Nishi Kanda 3-5-2, Chiyoda-ku, Tokyo, 101-0065, Japan.
| | - Junya Masuda
- Medical Affairs Division, Immunology and Infectious Disease Department, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Phiona I-Ching Tsai
- Value, Evidence and Access Department, Janssen Pharmaceutical K.K., Nishi Kanda 3-5-2, Chiyoda-ku, Tokyo, 101-0065, Japan
| | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
3
|
Chen L, Wang X, Liu C, Chen X, Li P, Qiu W, Guo K. Integrative analysis of gene and microRNA expression profiles reveals candidate biomarkers and regulatory networks in psoriasis. Medicine (Baltimore) 2024; 103:e39002. [PMID: 39028999 PMCID: PMC11398825 DOI: 10.1097/md.0000000000039002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Psoriasis (PS) is a chronic inflammatory skin disease with a long course and tendency to recur, the pathogenesis of which is not fully understood. This article aims to identify the key differentially expressed genes (DEGs) and microRNA (miRNAs) of PS, construct the core miRNA-mRNA regulatory network, and investigate the underlying molecular mechanism through integrated bioinformatics approaches. Two gene expression profile datasets and 2 miRNA expression profile datasets were downloaded from the gene expression omnibus (GEO) database and analyzed by GEO2R. Intersection DEGs and intersection differentially expressed miRNAs (DEMs) were each screened. The Metascape database and R software were used to perform enrichment analysis of intersecting DEGs and study their functions. Target genes of DEMs were predicted from the online database miRNet. The protein-protein interaction files of the overlapping target genes were obtained from string and the miRNA-mRNA network was constructed by Cytoscape software. In addition, the online web tool CIBERSORT was used to analyze the immune infiltration of dataset GSE166388, and the relative abundance of 22 immune cells in the diseased and normal control tissues was calculated and assessed. Finally, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to verify the relative expression of the screened miRNAs and mRNAs to assess the applicability of DEMs and DEGs as biomarkers in PS. A total of 205 mating DEGs and 6 mating DEMs were screened. 103 dysregulated crossover genes from 205 crossover DEGs and 7878 miRNA target genes were identified. The miRNA-mRNA regulatory network was constructed and the top 10 elements were obtained from CytoHubba, including hsa-miR-146a-5p, hsa-miR-17-5p, hsa-miR-106a-5p, hsa-miR-18a-5p, CDK1, CCNA2, CCNB1, MAD2L1, RRM2, and CCNB2. QRT-PCR revealed significant differences in miRNA and gene expression between inflammatory and normal states. In this study, the miRNA-mRNA core regulator pairs hsa-miR-146a-5p, hsa-miR-17-5p, hsa-miR-106a-5p, hsa-miR-18a-5p, CDK1, CCNA2, CCNB1, MAD2L1, RRM2, and CCNB2 may be involved in the course of PS. This study provides new insights to discover new potential targets and biomarkers to further investigate the molecular mechanism of PS.
Collapse
Affiliation(s)
- Lu Chen
- Department of Immunology, Jianghan University, School of Medicine, Wuhan, Hubei, PR China
| | - Xiaochen Wang
- Department of Immunology, Jianghan University, School of Medicine, Wuhan, Hubei, PR China
| | - Chang Liu
- Department of Immunology, Jianghan University, School of Medicine, Wuhan, Hubei, PR China
| | - Xiaoqing Chen
- Department of Immunology, Jianghan University, School of Medicine, Wuhan, Hubei, PR China
| | - Peng Li
- Department of Dermatology, Wuhan Central Hospital, Wuhan, Hubei, PR China
| | - Wenhong Qiu
- Department of Immunology, Jianghan University, School of Medicine, Wuhan, Hubei, PR China
| | - Kaiwen Guo
- Department of Pathogenic Biology, Wuhan University of Science and Technology, Medical College, Wuhan, Hubei, PR China
| |
Collapse
|
4
|
Wang L, Dou YX, Yu QX, Hu Z, Ip SP, Xian YF, Lin ZX. Improvement effects of a novel Chinese herbal formula in imiquimod and IL-23-stimulated mouse models of psoriasis. Chin Med 2024; 19:81. [PMID: 38858762 PMCID: PMC11165727 DOI: 10.1186/s13020-024-00951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Psoriasis is a long-term inflammatory skin disease. A novel herbal formula containing nine Chinese herbal medicines, named Inflammation Skin Disease Formula (ISDF), has been prescribed in clinics for decades. AIMS To investigate the efficacy and action mechanisms of ISDF on psoriasis using imiquimod (IMQ) and Interleukin-23 (IL-23)-induced models in mice and reveal the pharmacokinetics profile of ISDF in rats. METHODS Topical administration of IMQ and intradermal injection with IL-23 respectively induced skin lesions like psoriasis on the dorsal area of Balb/c and C57 mice. The mice's body weight, skin thickness, and psoriasis area and severity index (PASI) were assessed weekly. SD rats were used in the pharmacokinetics study and the contents of berberine and baicalin were determined. RESULTS The PASI scores and epidermal thickness of mice were markedly decreased after ISDF treatment in both models. ISDF treatment significantly decreased the contents of IL-17A and IL-22 in the serum of IMQ- and IL-23-treated mice. Importantly, ISDF markedly downregulated IL-4, IL-6, IL-1β, and tumor necrosis factor α (TNF-α) gene expression, and the phosphorylation of NF-κB p65, JNK, ERKs and MAPK p38 in IMQ-treated mice. The protein phosphorylation of Jak1, Jak2, Tyk2 and Stat3 was significantly mitigated in the ISDF-treated groups. The absorption of baicalin and berberine of ISDF through the gastrointestinal tract of rats was limited, and their distribution and metabolism in rats were also very slow, which suggested ISDF could be used in the long-term application. CONCLUSIONS ISDF has a strong anti-psoriatic therapeutic effect on mouse models induced with psoriasis through IMQ and IL-23, which is achieved by inhibiting the activation of the Jak/Stat3-activated IL-23/Th17 axis and the downstream NF-κB signalling and MAPK signalling pathways. ISDF holds great potential to be a therapy for psoriasis and should be further developed for this purpose.
Collapse
Affiliation(s)
- Lan Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin , Hong Kong SAR, NT, China
| | - Yao-Xing Dou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiu-Xia Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin , Hong Kong SAR, NT, China
| | - Zhen Hu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin , Hong Kong SAR, NT, China
| | - Siu-Po Ip
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin , Hong Kong SAR, NT, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin , Hong Kong SAR, NT, China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin , Hong Kong SAR, NT, China.
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Zalesak M, Danisovic L, Harsanyi S. Psoriasis and Psoriatic Arthritis-Associated Genes, Cytokines, and Human Leukocyte Antigens. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:815. [PMID: 38792999 PMCID: PMC11123327 DOI: 10.3390/medicina60050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In recent years, research has intensified in exploring the genetic basis of psoriasis (PsO) and psoriatic arthritis (PsA). Genome-wide association studies (GWASs), including tools like ImmunoChip, have significantly deepened our understanding of disease mechanisms by pinpointing risk-associated genetic loci. These efforts have elucidated biological pathways involved in PsO pathogenesis, particularly those related to the innate immune system, antigen presentation, and adaptive immune responses. Specific genetic loci, such as TRAF3IP2, REL, and FBXL19, have been identified as having a significant impact on disease development. Interestingly, different genetic variants at the same locus can predispose individuals to either PsO or PsA (e.g., IL23R and deletion of LCE3B and LCE3C), with some variants being uniquely linked to PsA (like HLA B27 on chromosome 6). This article aims to summarize known and new data on the genetics of PsO and PsA, their associated genes, and the involvement of the HLA system and cytokines.
Collapse
Affiliation(s)
- Marek Zalesak
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| |
Collapse
|
6
|
Krishnan VS, Kõks S. Transcriptional Landscape of Repetitive Elements in Psoriatic Skin from Large Cohort Studies: Relevance to Psoriasis Pathophysiology. Int J Mol Sci 2023; 24:16725. [PMID: 38069048 PMCID: PMC10706217 DOI: 10.3390/ijms242316725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
While studies demonstrating the expression of repetitive elements (REs) in psoriatic skin using RNA-seq have been published before, not many studies have focused on the genome-wide expression patterns using larger cohorts. This study investigated the transcriptional landscape of differentially expressed REs in lesional and non-lesional skin from two previously published large datasets. We observed significant differential expression of REs in lesional psoriatic skin as well as the skin of healthy controls. Significant downregulation of several ERVs, HERVs (including HERV-K) and LINEs was observed in lesional psoriatic skin from both datasets. The upregulation of a small subset of HERV-Ks and Alus in lesional psoriatic skin was also reported. An interesting finding from this expression data was the significant upregulation and overlapping of tRNA repetitive elements in lesional and non-lesional psoriatic skin. The data from this study indicate the potential role of REs in the immunopathogenesis of psoriasis. The expression data from the two independent large study cohorts are powerful enough to confidently verify the differential expression of REs in relation to psoriatic skin pathology. Further studies are warranted to understand the functional impact of these repetitive elements in psoriasis pathogenesis, thereby expanding their significance as a potential targeting pathway for the disease treatment of psoriasis and other inflammatory diseases.
Collapse
Affiliation(s)
- Vidya S. Krishnan
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Discovery Way, Murdoch, WA 1650, Australia;
- Perron Institute for Neurological and Translational Science, 8 Verdun St., Nedlands, WA 6009, Australia
| | - Sulev Kõks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Discovery Way, Murdoch, WA 1650, Australia;
- Perron Institute for Neurological and Translational Science, 8 Verdun St., Nedlands, WA 6009, Australia
| |
Collapse
|
7
|
Stacey VM, Kõks S. Genome-Wide Differential Transcription of Long Noncoding RNAs in Psoriatic Skin. Int J Mol Sci 2023; 24:16344. [PMID: 38003532 PMCID: PMC10671291 DOI: 10.3390/ijms242216344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) may contribute to the formation of psoriatic lesions. The present study's objective was to identify long lncRNA genes that are differentially expressed in patient samples of psoriasis through computational analysis techniques. By using previously published RNA sequencing data from psoriatic and healthy patients (n = 324), we analysed the differential expression of lncRNAs to determine transcripts of heightened expression. We computationally screened lncRNA transcripts as annotated by GENCODE across the human genome and compared transcription in psoriatic and healthy samples from two separate studies. We observed 54 differentially expressed genes as seen in two independent datasets collected from psoriasis and healthy patients. We also identified the differential expression of LINC01215 and LINC1206 associated with the cell cycle pathway and psoriasis pathogenesis. SH3PXD2A-AS1 was identified as a participant in the STAT3/SH3PXD2A-AS1/miR-125b/STAT3 positive feedback loop. Both the SH3PXD2A-AS1 and CERNA2 genes have already been recognised as part of the IFN-γ signalling pathway regulation. Additionally, EPHA1-AS1, CYP4Z2P and SNHG12 gene upregulation have all been previously linked to inflammatory skin diseases. Differential expression of various lncRNAs affects the pathogenesis of psoriasis. Further characterisation of lncRNAs and their functions are important for developing our understanding of psoriasis.
Collapse
Affiliation(s)
- Valerie M. Stacey
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
8
|
Tomar Y, Gorantla S, Singhvi G. Insight into the pivotal role of signaling pathways in psoriasis pathogenesis, potential therapeutic molecules and drug delivery approaches. Drug Discov Today 2023; 28:103465. [PMID: 36481585 DOI: 10.1016/j.drudis.2022.103465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Psoriasis is a multifactorial chronic autoimmune skin disorder, the exact cause of which is still under investigation. It is classified into different types displaying various histopathological features such as hyperproliferation, irregular parakeratosis and vascular infiltration of various immune cells with neutrophils in the epidermis. Over the past few decades, psoriasis pathogenesis has been thoroughly researched, leading to several advances in the treatment using small molecules and biologics. This review focuses on describing the role of various signaling pathways, including PDE-4, JAK-STAT, S1P, A3AR and NF-κB, in psoriasis pathogenesis and associated new molecules that are either recently approved or under clinical trials. This study has also addressed the relevance of employing nanotherapeutics to boost the efficacy of psoriasis treatment.
Collapse
Affiliation(s)
- Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan, India
| | - Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
9
|
Boehncke WH, Brembilla NC. Pathogenesis-oriented therapy of psoriasis using biologics. Expert Opin Biol Ther 2022; 22:1463-1473. [PMID: 35815360 DOI: 10.1080/14712598.2022.2100219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Psoriasis is currently regarded an immune-mediated inflammatory disease. The central pathogenic axis comprises interleukin-23, TH17-lymphocytes differentiating under its influence, and interleukin-17A as a key effector cytokine of these T-lymphocytes. All of these can selectively be targeted using biological therapies, thus potentially increasing efficacy and reducing adverse events when compared to conventional systemic therapeutics. AREAS COVERED We review the current concept of psoriasis as an immune-mediated inflammatory disease, assessing the evidence for a role of elements of the innate and adaptive immune system. We then correlate the pharmacological effects of biologics in psoriasis in light of the known physiologic as well as pathophysiological role of the respective targets. This is done on the basis of an extensive literature search of publications since 2018 which describe the role of the above-mentioned elements in health and disease or the effects of blocking these as an attempt to treat psoriasis. EXPERT OPINION Biologics targeting the above-mentioned central pathogenic axis provide a particularly effective and safe way to treat psoriasis. Given the impact of comorbidities on therapeutic decision-making, and the efficacy of some biologics also on certain comorbidities, these drugs represent a first step toward personalized medicine in the management of psoriasis.
Collapse
Affiliation(s)
- Wolf-Henning Boehncke
- Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
10
|
Cohen PR, Kurzrock R. Dermatologic Disease-Directed Targeted Therapy (D 3T 2): The Application of Biomarker-Based Precision Medicine for the Personalized Treatment of Skin Conditions-Precision Dermatology. Dermatol Ther (Heidelb) 2022; 12:2249-2271. [PMID: 36121579 PMCID: PMC9515268 DOI: 10.1007/s13555-022-00801-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022] Open
Abstract
Precision dermatology uses individualized dermatologic disease-directed targeted therapy (D3T2) for the management of dermatoses and for the evaluation and therapy of cutaneous malignancies. Personalized/precision strategies are based on biomarkers that are most frequently derived from tissue transcriptomic expression or genomic sequencing or from circulating cytokines. For instance, the pathologic diagnosis of a pigmented lesion and determining the prognosis of a malignant melanocytic neoplasm can be enhanced by genomic/transcriptomic analysis. In addition to biopsy, innovative techniques have been developed for obtaining transcriptomes in skin conditions; as an example, patches can be applied to a psoriasis plaque for a few minutes to capture the epidermis/upper dermis transcriptome. Atopic dermatitis and prurigo nodularis may also be candidate conditions for precision dermatology. Precision dermatology has a role in managing melanoma and nonmelanoma skin cancers and rare cutaneous tumors-such as perivascular epithelioid cell tumor (PEComa)-that can originate in or metastasize to the skin. For instance, advanced/metastatic basal cell carcinomas can be treated with Hedgehog inhibitors (vismodegib and sonidegib) targeting the smoothened (SMO) or patched 1 (PTCH1) gene alterations that are a hallmark of these cancers and activate the Hedgehog pathway. Advanced/metastatic basal and cutaneous squamous cell cancers often have a high tumor mutational burden (which predicts immunotherapy response); immune checkpoint blockade with cemiplimab, a programmed cell death protein 1 (PD1) inhibitor, is now approved for these malignancies. Gene expression profiling of primary cutaneous squamous cell carcinoma can identify those individuals at high risk for subsequent metastases. In the realm of rare neoplasms, PEComas-which can originate in the skin, albeit uncommonly-have tuberous sclerosis complex 1 (TSC1)/tuberous sclerosis complex 2 (TSC2) gene alterations, which activate mammalian target of rapamycin (mTOR) signaling, and can be suppressed by nab-sirolimus, now approved for this condition. In summary, precision dermatologic techniques/strategies are an important emerging approach for evaluation and management of skin disorders and cutaneous neoplasms, and may serve as a paradigm for the application of precision medicine beyond dermatology.
Collapse
Affiliation(s)
- Philip R Cohen
- Department of Dermatology, Davis Medical Center, University of California, Sacramento, CA, USA.
- Touro University California College of Osteopathic Medicine, Vallejo, CA, USA.
- University of California, 10991 Twinleaf Court, San Diego, CA, 92131, USA.
| | - Razelle Kurzrock
- Department of Medicine, Medical College of Wisconsin Cancer Center and Genome Sciences and Precision Medicine Center, Milwaukee, WI, USA
- Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Villejuif, France
| |
Collapse
|