1
|
Kumar V, Parate S, Ro HS, Jung TS, Lee KW. Modeling of FAK-PROTAC candidates from GSK2256098 analogs for targeted protein degradation. Biochem Biophys Res Commun 2024; 740:151001. [PMID: 39571228 DOI: 10.1016/j.bbrc.2024.151001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Protein inhibition via the traditional drug-designing approach has been shown to be an effective method for developing numerous small-molecule-based therapeutics. In the last decade, small inhibitors-guided protein degradation has arisen as an alternative method with the potential to fulfill the drug requirement for undruggable targets. Focal adhesion kinase (FAK) is a crucial modulator of the growth and spread of tumors, apart from it also acts as a scaffold for signaling of other proteins. FAK inhibitors have thus far had unsatisfactory results in clinical trials for cancer applications. Unlike prior attempts to control FAK expression, which were restricted to kinase domain inhibition with limited success in clinical research, protein degradation has the potential to concurrently disrupt FAK's kinase and scaffolding function. Recently, several FAK degraders were reported based on FAK Type I inhibitors using complex chemical synthesis approaches. Interestingly, recently a ternary complex was published revealing the binding mode of the FAK-PROTAC-E3 complex. This complex opens an avenue for the development of rational PROTAC design against FAK protein. Therefore, in the present study, we selected the most active Type I FAK inhibitor GSK2256098. The binding mode of the inhibitor prompted us to identify the most suitable analog for PROTAC design. We have identified a high-affinity analog that is suitable for PTOTAC design through the application of molecular docking (MD) and molecular dynamics simulations (MDS). Further based on the ternary FAK-PROTAC-E3 complex we build a binary complex FAK-Hit-E3-VHL between both proteins. Using the structure-based approach ten different potential FAK PROTACs candidates were designed. The stability of the complexes was analyzed using MDS and binding free energies were used to predict the binding affinity. Finally, based on desirable intermolecular interactions with the target and E3 ligase ProTAC4 was selected as the best candidate when compared with known FAK PROTAC GSK215.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea; Basque Center for Materials, Applications, and Nanostructures (BCMaterials), Buil. Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, Leioa, 48940, Spain.
| | - Shraddha Parate
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Hyeon-Su Ro
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea; Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju, 52650, Republic of Korea.
| |
Collapse
|
2
|
Gao C, Li X, Liu T, Wang W, Wu J. An overview of phenylsulfonylfuroxan-based nitric oxide donors for cancer treatment. Bioorg Chem 2024; 154:108020. [PMID: 39657549 DOI: 10.1016/j.bioorg.2024.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Nitric oxide (NO) is a gaseous molecule integral to numerous physiological processes, including tumor modulation, cardiovascular regulation, and systemic physiological functions. Its dual role in promoting and inhibiting tumor growth makes it a focal point of contemporary oncological research. Phenylsulfonylfuroxan, a classical NO donor, has been shown to significantly elevate NO levels, thereby inducing apoptosis and inhibiting proliferation and metastasis in tumor cells. It enhances the efficacy of chemotherapy, radiotherapy, and immunotherapy, reverses multidrug resistance (MDR), and impedes tumor progression. Notably, phenylsulfonylfuroxan have the ability to trigger ferroptosis in cancer cells by binding covalently to inhibit glutathione peroxidase 4 (GPX4). Recent developments in phenylsulfonylfuroxan-based therapies have positioned them as crucial in the advancement of cancer treatment modalities. This review elucidates the mechanism by which phenylsulfonylfuroxan releases NO and summarizes the significant advancements over the past 16 years in the research and development of phenylsulfonylfuroxan conjugates with various anticancer agents for targeted cancer therapy.
Collapse
Affiliation(s)
- Chao Gao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xingyu Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Tong Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Wanning Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Ma C, Dan M, Wang Y, Shu C, Jiao M, Shao Y, Zhang H, Li C, Zeng Y, Zhu J, Huang JA, Li J, Liu Z. Diosmin reduces the stability of Snail and Cyclin D1 by targeting FAK to inhibit NSCLC progression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156135. [PMID: 39405613 DOI: 10.1016/j.phymed.2024.156135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND In different tumours, focal adhesion kinase (FAK), a nonreceptor tyrosine kinase, is upregulated and hence, it represents a promising target for cancer therapy. However, the development of FAK kinase inhibitors has faced a number of challenges. It is therefore imperative that new, effective FAK kinase inhibitors be identified promptly. METHODS Small molecules that target FAK were identified through molecular docking and validated through surface plasmon resonance (SPR) and cell thermal shift analysis. We investigated the pharmacological effects of FAK kinase inhibitors using CCK-8, colony formation, EdU, and Transwell assays and cell cycle analysis. The molecular mechanism was determined via methods such as coimmunoprecipitation, RNA pull-down and RNA immunoprecipitation. RESULTS Here, we confirmed that diosmin (Dio) is an inhibitor of FAK and demonstrated its anti-proliferative and anti-metastatic effects in lung adenocarcinoma. Mechanistically, Dio inhibited tumour proliferation and metastasis by impeding the catalytic activity of FAK. Dio activated the ubiquitin proteasome pathway to induce Cyclin D1 degradation, while inhibiting tumour proliferation and reversing the epithelial mesenchymal transition (EMT) process by reducing the mRNA stability of Snail, thereby inhibiting cancer metastasis. In addition, the inhibitory effect of Dio on lung adenocarcinoma was validated in a mouse xenograft model. CONCLUSION These results support the tumour-promoting role of FAK in lung adenocarcinoma by stabilizing Cyclin D1 and Snail and suggest that Dio is a promising candidate for FAK inhibition.
Collapse
Affiliation(s)
- Chenkang Ma
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China
| | - Mengxia Dan
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China
| | - Ying Wang
- Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China
| | - Chenying Shu
- Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China
| | - Min Jiao
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China
| | - Yuna Shao
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China
| | - Huiling Zhang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China
| | - Chang Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China; Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China; Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China; Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China
| | - Jianjun Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China; Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China.
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China; Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China; Cancer Institute, Suzhou Medical College, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Katoh K. Signal Transduction Mechanisms of Focal Adhesions: Src and FAK-Mediated Cell Response. FRONT BIOSCI-LANDMRK 2024; 29:392. [PMID: 39614431 DOI: 10.31083/j.fbl2911392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 12/01/2024]
Abstract
Cell-to-substrate adhesion sites, also known as focal adhesion sites (FAs), are complexes of different proteins on the cell surface. FAs play important roles in communication between cells and the extracellular matrix (ECM), leading to signal transduction involving different proteins that ultimately produce the cell response. This cell response involves cell adhesion, migration, motility, cell survival, and cell proliferation. The most important component of FAs are integrins. Integrins are transmembrane proteins that receive signals from the ECM and communicate them to the cytoplasm, thus activating several downstream proteins in a signaling cascade. Cellular Proto-oncogene tyrosine-protein kinase Src (c-Src) and focal adhesion kinase (FAK) are non-receptor tyrosine kinases that functionally interact to promote crucial roles in FAs. c-Src is a tyrosine kinase, activated by autophosphorylation and, in turn, activates another important protein, FAK. Activated FAK directly interacts with the cytoplasmic domain of integrin and activates other FA proteins by attaching to them. These proteins activated by FAK then activate other downstream pathways such as mitogen-activated protein kinase (MAPK) and Akt pathways involved in cell proliferation, migration, and cell survival. Src can induce detachment of FAK from the integrin to increase the focal adhesion turnover. As a result, the Src-FAK complex in FAs is critical for cell adhesion and survival mechanisms. Overexpression of FA proteins has been linked to a variety of pathological disorders, including cancers, growth retardation, and bone deformities. FAK and Src are overexpressed in various cancers. This review, which focuses on the roles of two important signaling proteins, c-Src and FAK, attempts to provide a thorough and up-to-date examination of the signal transduction mechanisms mediated by focal adhesions. The author also described that FAK and Src may serve as potential targets for future therapies against diseases associated with their overexpression, such as certain types of cancer.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, 305-8521 Tsukuba, Japan
| |
Collapse
|
5
|
Zhang Y, Wei S, Chen Z, Xu R, Li S, You L, Wu R, Zhang Y, Liao J, Xu X, Song E, Luo M. LncRNA FAISL Inhibits Calpain 2-Mediated Proteolysis of FAK to Promote Progression and Metastasis of Triple Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407493. [PMID: 39287113 PMCID: PMC11558121 DOI: 10.1002/advs.202407493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype in breast tumors. When re-analyzing TCGA breast cancer dataset, we found cell adhesion molecules are highly enriched in differentially expressed genes in TNBC samples, among which Focal Adhesion Kinase (FAK) is most significantly associated with poor survival of TNBC patients. FAK is precisely modulated in the focal adhesion dynamics. To investigate whether lncRNAs regulate FAK signaling, we performed RNA immunoprecipitation sequencing and found FAISL (FAK Interacting and Stabilizing LncRNA) abundantly enriched in FAK-interacting lncRNAs and frequently overexpressed in TCGA TNBC tissues. FAISL promotes TNBC cell adhesion, cytoskeleton spreading, proliferation, and anchor-independent survival. FAISL doesn't affect FAK mRNA but positively regulates FAK protein level by blocking Calpain 2-mediated proteolysis. FAISL interacts with the C-terminus domain of FAK, whereby masks the binding site of Calpain 2 and prevents FAK cleavage. High level of FAISL correlates with FAK expression in tumor tissues and poor prognosis of TNBC patients. A siRNA delivery system targeting FAISL using reduction-responsive nanoparticles effectively inhibits tumor growth and metastasis in TNBC mouse models. Together, these findings uncover a lncRNA-mediated mechanism of regulating FAK proteolysis in the TNBC progression, and highlight the potential of targeting lncRNA FAISL for TNBC treatment.
Collapse
Affiliation(s)
- Yunmei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
| | - Shiyu Wei
- Department of ImmunologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zhengjie Chen
- Breast Tumor CenterSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
| | - Shu‐Rong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
| | - Lili You
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhou510120China
| | - Ruiyue Wu
- The First Clinical Medical CollegeLanzhou UniversityLanzhou730000China
| | - Yin Zhang
- Department of Cellular and Molecular Diagnostics CenterSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
| | - Jian‐You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
| | - Man‐Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
| |
Collapse
|
6
|
Geijerman E, Terrana F, Peters GJ, Deng D, Diana P, Giovannetti E, Xu G. Targeting a key FAK-tor: the therapeutic potential of combining focal adhesion kinase (FAK) inhibitors and chemotherapy for chemoresistant non-small cell lung cancer. Expert Opin Investig Drugs 2024; 33:1103-1118. [PMID: 39435477 DOI: 10.1080/13543784.2024.2417762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION NSCLC is the leading cause of cancer-related deaths globally, with a low survival rate primarily due to NSCLC frequently becoming chemoresistant. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase involved in pathways regulating multiple processes in the cell, including survival, migration, and the TME, that contribute to both tumor progression and drug resistance. Recently, FAK inhibitors (FAKi) have shown promising potential for the treatment of NSCLC. AREAS COVERED This narrative review aims to summarize key signaling pathways involving FAK that contribute to tumor progression and drug resistance. It will further provide an overview of FAKi currently in pre- and early-phase clinical trials for solid tumors, as well as the therapeutic potential of combining FAKi with chemotherapy, as this has emerged as a promising strategy to overcome chemoresistance in NSCLC. EXPERT OPINION It is becoming increasingly clear that FAK is not an oncogenic driver but rather contributes to tumor progression and drug resistance. Hence, while FAKi have only demonstrated modest results in clinical trials when given by themselves, treatment regimens combining other therapies with FAKi have shown promising potential to overcome drug resistance. Lastly, of particular novelty are FAK-PROTACs (proteolysis-targeting chimaeras), which uniquely target both cytosolic and nuclear FAK.
Collapse
Affiliation(s)
- Emma Geijerman
- Amsterdam University College, Amsterdam, The Netherlands
| | - Francesca Terrana
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, Pisa, Italy
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Xu MS, Gu XF, Li C, Pan LX, Zhu ZX, Fan M, Zhao Y, Chen JF, Liu X, Zhang XW. A novel FAK-degrading PROTAC molecule exhibited both anti-tumor activities and efficient MDR reversal effects. Acta Pharmacol Sin 2024; 45:2174-2185. [PMID: 38844788 PMCID: PMC11420224 DOI: 10.1038/s41401-024-01312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 09/25/2024] Open
Abstract
FAK (focal adhesion kinase) is widely involved in cancer growth and drug resistance development. Thus, FAK inhibition has emerged as an effective strategy for tumor treatment both as a monotherapy or in combination with other treatments. But the current FAK inhibitors mainly concentrate on its kinase activity, overlooking the potential significance of FAK scaffold proteins. In this study we employed the PROTAC technology, and designed a novel PROTAC molecule F2 targeting FAK based on the FAK inhibitor IN10018. F2 exhibited potent inhibitory activities against 4T1, MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells with IC50 values of 0.73, 1.09, 5.84 and 3.05 μM, respectively. On the other hand, F2 also remarkably reversed the multidrug resistance (MDR) in HCT8/T, A549/T and MCF-7/ADR cells. Both the effects of F2 were stronger than the FAK inhibitor IN10018. To our knowledge, F2 was the first reported FAK-targeted PROTAC molecule exhibiting reversing effects on chemotherapeutic drug resistance, and its highest reversal fold could reach 158 times. The anti-tumor and MDR-reversing effects of F2 might be based on its inhibition on AKT (protein kinase B, PKB) and ERK (extracellular signal-regulated kinase) signaling pathways, as well as its impact on EMT (epithelial-mesenchymal transition). Furthermore, we found that F2 could reduce the protein level of P-gp in HCT8/T cells, thereby contributing to reverse drug resistance from another perspective. Our results will boost confidence in future research focusing on targeting FAK and encourage further investigation of PROTAC with potent in vivo effects.
Collapse
Affiliation(s)
- Ming-Shi Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Fan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Cong Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Li-Xuan Pan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zi-Xia Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jian-Fang Chen
- Nanjing Bestfluorodrug Pharmaceutical Technology Co., Ltd, Nanjing, 210023, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201003, China.
| | - Xiong-Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
8
|
Zhou S, Xu H, Duan Y, Tang Q, Huang H, Bi F. Survival mechanisms of circulating tumor cells and their implications for cancer treatment. Cancer Metastasis Rev 2024; 43:941-957. [PMID: 38436892 DOI: 10.1007/s10555-024-10178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Metastasis remains the principal trigger for relapse and mortality across diverse cancer types. Circulating tumor cells (CTCs), which originate from the primary tumor or its metastatic sites, traverse the vascular system, serving as precursors in cancer recurrence and metastasis. Nevertheless, before CTCs can establish themselves in the distant parenchyma, they must overcome significant challenges present within the circulatory system, including hydrodynamic shear stress (HSS), oxidative damage, anoikis, and immune surveillance. Recently, there has been a growing body of compelling evidence suggesting that a specific subset of CTCs can persist within the bloodstream, but the precise mechanisms of their survival remain largely elusive. This review aims to present an outline of the survival challenges encountered by CTCs and to summarize the recent advancements in understanding the underlying survival mechanisms, suggesting their implications for cancer treatment.
Collapse
Affiliation(s)
- Shuang Zhou
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huanji Xu
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yichun Duan
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huixi Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
9
|
Farag MA, Kandeel MM, Kassab AE, Faggal SI. Medicinal attributes of thienopyrimidine scaffolds incorporating the aryl urea motif as potential anticancer candidates via VEGFR inhibition. Arch Pharm (Weinheim) 2024; 357:e2400125. [PMID: 38738795 DOI: 10.1002/ardp.202400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Worldwide, cancer is a major public health concern. It is a well-acknowledged life-threatening disease. Despite numerous advances in the understanding of the genetic basis of cancer growth and progression, therapeutic challenges remain high. Human tumors exhibited mutation or overexpression of several tyrosine kinases (TK). The vascular endothelial growth factor receptor (VEGFR) is a TK family member and is well known for tumor growth and progression. Therefore, VEGF/VEGFR pathway inhibition is an appealing approach for cancer drug discovery. This review will discuss the structure-based optimization of thienopyrimidines incorporating the aryl urea moiety to develop scaffolds of potent anticancer activity via VEGFR inhibition published between 2013 and 2023. Increasing knowledge of probable scaffolds that can act as VEGFR inhibitors might spur the hunt for novel anticancer medications that are safer, more effective, or both.
Collapse
Affiliation(s)
- Myrna A Farag
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Manal M Kandeel
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samar I Faggal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Hang NT, My TTK, Van Anh LT, Van Anh PT, Anh TDH, Van Phuong N. Identification of potential FAK inhibitors using mol2vec molecular descriptor-based QSAR, molecular docking, ADMET study, and molecular dynamics simulation. Mol Divers 2024; 28:2163-2175. [PMID: 38582821 DOI: 10.1007/s11030-024-10839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
This study aims to identify potential focal adhesion kinase (FAK) inhibitors through an integrated computational approach, combining mol2vec descriptor-based QSAR, molecular docking, ADMET study, and molecular dynamics simulation. A dataset of 437 compounds with known FAK inhibitory activities was used to develop QSAR models using machine learning algorithms combined with mol2vec descriptors. Subsequently, the most promising compounds were subjected to molecular docking against FAK to evaluate their binding affinities and key interactions. ADMET study and molecular dynamics simulation were also employed to investigate the pharmacokinetic, drug-like properties, and the stability of the protein-ligand complexes. The results showed that the mol2vec descriptor-based QSAR model established by support vector regression demonstrated good predictive performance (R2 = 0.813, RMSE = 0.453, MAE = 0.263 in case of training set, and R2 = 0.729, RMSE = 0.635, MAE = 0.477 in case of test set), indicating their reliability in identifying potent FAK inhibitors. Using this QSAR model and molecular docking, compound 21 (ZINC000004523722) was identified as the most potential compound, with predicted logIC50 value and binding energy of 2.59 and - 9.3 kcal/mol, respectively. The results of molecular dynamics simulation and ADMET study also further suggested its potential as a promising drug candidate. However, because our research was merely theoretical, additional in vitro and in vivo studies are required for the verification of these results.
Collapse
Affiliation(s)
- Nguyen Thu Hang
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicine, Hanoi University of Pharmacy, Hanoi, 11000, Vietnam
| | - Than Thi Kieu My
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicine, Hanoi University of Pharmacy, Hanoi, 11000, Vietnam
| | - Le Thi Van Anh
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicine, Hanoi University of Pharmacy, Hanoi, 11000, Vietnam
| | - Phan Thi Van Anh
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicine, Hanoi University of Pharmacy, Hanoi, 11000, Vietnam
| | - Thai Doan Hoang Anh
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicine, Hanoi University of Pharmacy, Hanoi, 11000, Vietnam
| | - Nguyen Van Phuong
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicine, Hanoi University of Pharmacy, Hanoi, 11000, Vietnam.
| |
Collapse
|
11
|
Schlaepfer DD, Ojalill M, Stupack DG. Focal adhesion kinase signaling - tumor vulnerabilities and clinical opportunities. J Cell Sci 2024; 137:jcs261723. [PMID: 39034922 PMCID: PMC11298715 DOI: 10.1242/jcs.261723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.
Collapse
Affiliation(s)
- David D. Schlaepfer
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Marjaana Ojalill
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Dwayne G. Stupack
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| |
Collapse
|
12
|
Kumar V, Singh P, Parate S, Singh R, Ro HS, Song KS, Lee KW, Park YM. Computational insights into allosteric inhibition of focal adhesion kinase: A combined pharmacophore modeling and molecular dynamics approach. J Mol Graph Model 2024; 130:108789. [PMID: 38718434 DOI: 10.1016/j.jmgm.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that modulates integrin and growth factor signaling pathways and is implicated in cancer cell migration, proliferation, and survival. Over the past decade various, FAK kinase, FERM, and FAT domain inhibitors have been reported and a few kinase domain inhibitors are under clinical consideration. However, few of them were identified as multikinase inhibitors. In kinase drug design selectivity is always a point of concern, to improve selectivity allosteric inhibitor development is the best choice. The current research utilized a pharmacophore modeling (PM) approach to identify novel allosteric inhibitors of FAK. The all-available allosteric inhibitor bound 3D structures with PDB ids 4EBV, 4EBW, and 4I4F were utilized for the pharmacophore modeling. The validated PM models were utilized to map a database of 770,550 compounds prepared from ZINC, EXIMED, SPECS, ASINEX, and InterBioScreen, aiming to identify potential allosteric inhibitors. The obtained compounds from screening step were forwarded to molecular docking (MD) for the prediction of binding orientation inside the allosteric site and the results were evaluated with the known FAK allosteric inhibitor (REF). Finally, 14 FAK-inhibitor complexes were selected from the docking study and were studied under molecular dynamics simulations (MDS) for 500 ns. The complexes were ranked according to binding free energy (BFE) and those demonstrated higher affinity for allosteric site of FAK than REF inhibitors were selected. The selected complexes were further analyzed for intermolecular interactions and finally, three potential allosteric inhibitor candidates for the inhibition of FAK protein were identified. We believe that identified scaffolds may help in drug development against FAK as an anticancer agent.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea; Computational Biophysics Lab, Basque Center for Materials, Applications, and Nanostructures (BCMaterials), Buil. Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, Leioa, 48940, Spain.
| | - Pooja Singh
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Shraddha Parate
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Rajender Singh
- Division of Crop Improvement and Seed Technology ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Hyeon-Su Ro
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of Medicine, 194 Wachi-ro, Yeongdo-gu, Busan, 49104, Republic of Korea
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea; Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju, 52650, Republic of Korea.
| | - Yeong-Min Park
- Department of Integrative Biological Sciences and Industry, Sejong University 209, Neugdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
13
|
Yang M, Xiang H, Luo G. Targeting focal adhesion kinase (FAK) for cancer therapy: FAK inhibitors, FAK-based dual-target inhibitors and PROTAC degraders. Biochem Pharmacol 2024; 224:116246. [PMID: 38685282 DOI: 10.1016/j.bcp.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays an essential role in regulating cell proliferation, migration and invasion through both kinase-dependent enzymatic function and kinase-independent scaffolding function. The overexpression and activation of FAK is commonly observed in various cancers and some drug-resistant settings. Therefore, targeted disruption of FAK has been identified as an attractive strategy for cancer treatment. To date, numerous structurally diverse inhibitors targeting distinct domains of FAK have been developed, encompassing kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors, with several FAK inhibitors advanced to clinical trials. Moreover, given the critical role of FAK scaffolding function in signal transduction, FAK-targeted PROTACs have also been developed. Although no current FAK-targeted therapeutics have been approved for the market, the combination of FAK inhibitors with other anticancer drugs has shown considerable promise in the clinic. This review provides an overview of current drug discovery strategies targeting FAK, including the development of FAK inhibitors, FAK-based dual-target inhibitors and proteolysis-targeting chimeras (PROTACs) in both literature and patent applications. Accordingly, their design and optimization process, mechanisms of action and biological activities are discussed to offer insights into future directions of FAK-targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
14
|
Gao J, Cheng J, Xie W, Zhang P, Liu X, Wang Z, Zhang B. Prospects of focal adhesion kinase inhibitors as a cancer therapy in preclinical and early phase study. Expert Opin Investig Drugs 2024; 33:639-651. [PMID: 38676368 DOI: 10.1080/13543784.2024.2348068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION FAK, a nonreceptor cytoplasmic tyrosine kinase, plays a crucial role in tumor metastasis, drug resistance, tumor stem cell maintenance, and regulation of the tumor microenvironment. FAK has emerged as a promising target for tumor therapy based on both preclinical and clinical data. AREAS COVERED This paper aims to summarize the molecular mechanisms underlying FAK's involvement in tumorigenesis and progression. Encouraging results have emerged from ongoing clinical trials of FAK inhibitors. Additionally, we present an overview of clinical trials for FAK inhibitors, examining their potential as promising treatments. The pertinent studies gathered from databases including PubMed, ClinicalTrials.gov. EXPERT OPINION Since the first finding in 1990s, targeting FAK has became the focus of interests in many pharmaceutical companies. Through 30 years' discovery, the industry and academy gradually realized the features of FAK target which may not be a driver gene but a solid defense system for the cancer initiation and development. Currently, the ongoing clinical regimens involving FAK inhibition are all the combination strategies in which FAK inhibitors can further strengthen the cancer cell killing effects of other testing agents. The emerging positive signal in clinical trials foresee targeting FAK as class will be an effective mean to fight against cancers.
Collapse
Affiliation(s)
| | | | - Wanyu Xie
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Ping Zhang
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Xuebin Liu
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Zaiqi Wang
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | | |
Collapse
|
15
|
Rosenblum SL, Soueid DM, Giambasu G, Vander Roest S, Pasternak A, DiMauro EF, Simov V, Garner AL. Live cell screening to identify RNA-binding small molecule inhibitors of the pre-let-7-Lin28 RNA-protein interaction. RSC Med Chem 2024; 15:1539-1546. [PMID: 38784453 PMCID: PMC11110735 DOI: 10.1039/d4md00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
Dysregulation of the networking of RNA-binding proteins (RBPs) and RNAs drives many human diseases, including cancers, and the targeting of RNA-protein interactions (RPIs) has emerged as an exciting area of RNA-targeted drug discovery. Accordingly, methods that enable the discovery of cell-active small molecule modulators of RPIs are needed to propel this emerging field forward. Herein, we describe the application of live-cell assay technology, RNA interaction with protein-mediated complementation assay (RiPCA), for high-throughput screening to identify small molecule inhibitors of the pre-let-7d-Lin28A RPI. Utilizing a combination of RNA-biased small molecules and virtual screening hits, we discovered an RNA-binding small molecule that can disrupt the pre-let-7-Lin28 interaction demonstrating the potential of RiPCA for advancing RPI-targeted drug discovery.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- Program in Chemical Biology, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
| | - Dalia M Soueid
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan 1600 Huron Parkway, NCRC B520 Ann Arbor MI 48109 USA
| | - George Giambasu
- Computational Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Steve Vander Roest
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
| | | | - Erin F DiMauro
- Discovery Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Vladimir Simov
- Discovery Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan 1600 Huron Parkway, NCRC B520 Ann Arbor MI 48109 USA
| |
Collapse
|
16
|
Gil-Henn H, Girault JA, Lev S. PYK2, a hub of signaling networks in breast cancer progression. Trends Cell Biol 2024; 34:312-326. [PMID: 37586982 DOI: 10.1016/j.tcb.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Breast cancer (BC) involves complex signaling networks characterized by extensive cross-communication and feedback loops between and within multiple signaling cascades. Many of these signaling pathways are driven by genetic alterations of oncogene and/or tumor-suppressor genes and are influenced by various environmental cues. We describe unique roles of the non-receptor tyrosine kinase (NRTK) PYK2 in signaling integration and feedback looping in BC. PYK2 functions as a signaling hub in various cascades, and its involvement in positive and negative feedback loops enhances signaling robustness, modulates signaling dynamics, and contributes to BC growth, epithelial-to-mesenchymal transition (EMT), stemness, migration, invasion, and metastasis. We also discuss the potential of PYK2 as a therapeutic target in various BC subtypes.
Collapse
Affiliation(s)
- Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1270, Sorbonne Université, 75005 Paris, France
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
17
|
Yang H, Li Y, Liang H, Cui C, Gan L, Zhang H. Design, Synthesis, Biological Evaluation and Molecular Docking of Novel F-18-Labeled Focal Adhesion Kinase Inhibitors as Potential Tumor Radiotracers. Molecules 2024; 29:1224. [PMID: 38542861 PMCID: PMC10974507 DOI: 10.3390/molecules29061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 11/12/2024] Open
Abstract
Tumor diagnosis, especially at the early stages, holds immense significance. Focal adhesion kinase (FAK) is often highly expressed across various types of tumors, making it a promising target for both therapy and diagnosis. In this study, seven novel inhibitors were designed and synthesized. The inhibitory activity of these compounds against FAK was notably potent, with an IC50 range of 1.27-1968 nM. In particular, compounds 7a and 7c, with IC50 values of 5.59 nM and 1.27 nM, respectively, were radiolabeled with F-18 and then evaluated with S-180 tumor-bearing mice. Subsequently, they exhibited moderate-to-high tumor uptake values, with [18F]7a showing 1.39 ± 0.30%ID/g at 60 min post injection and [18F]7c demonstrating 6.58 ± 0.46%ID/g at 30 min post injection. In addition, the results from docking studies revealed the binding specifics of the studied compounds. Overall, these findings hold the potential to offer valuable guidance for enhancing the development of radiotracers and enzyme inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | - Huabei Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
18
|
Zhang B, Li N, Gao J, Zhao Y, Jiang J, Xie S, Zhang C, Zhang Q, Liu L, Wang Z, Ji D, Wu L, Ren R. Targeting of focal adhesion kinase enhances the immunogenic cell death of PEGylated liposome doxorubicin to optimize therapeutic responses of immune checkpoint blockade. J Exp Clin Cancer Res 2024; 43:51. [PMID: 38373953 PMCID: PMC10875809 DOI: 10.1186/s13046-024-02974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUNDS Immune checkpoint blockade (ICB) is widely considered to exert long-term treatment benefits by activating antitumor immunity. However, many cancer patients show poor clinical responses to ICB due in part to the lack of an immunogenic niche. Focal adhesion kinase (FAK) is frequently amplified and acts as an immune modulator across cancer types. However, evidence illustrates that targeting FAK is most effective in combination therapy rather than in monotherapy. METHODS Here, we used drug screening, in vitro and in vivo assays to filter out that doxorubicin and its liposomal form pegylated liposome doxorubicin (PLD) showed synergistic anti-tumor effects in combination with FAK inhibitor IN10018. We hypothesized that anti-tumor immunity and immunogenic cell death (ICD) may be involved in the treatment outcomes through the data analysis of our clinical trial testing the combination of IN10018 and PLD. We then performed cell-based assays and animal studies to detect whether FAK inhibition by IN10018 can boost the ICD of PLD/doxorubicin and further established syngeneic models to test the antitumor effect of triplet combination of PLD, IN10018, and ICB. RESULTS We demonstrated that the combination of FAK inhibitor IN10018, and PLD/doxorubicin exerted effective antitumor activity. Notably, the doublet combination regimen exhibited response latency and long-lasting treatment effects clinically, outcomes frequently observed in immunotherapy. Our preclinical study confirmed that the 2-drug combination can maximize the ICD of cancer cells. This approach primed the tumor microenvironment, supplementing it with sufficient tumor-infiltrating lymphocytes (TILs) to activate antitumor immunity. Finally, different animal studies confirmed that the antitumor effects of ICB can be significantly enhanced by this doublet regimen. CONCLUSIONS We confirmed that targeting FAK by IN10018 can enhance the ICD of PLD/doxorubicin, further benefiting the anti-tumor effect of ICB. The animal tests of the triplet regimen warrant further discovery in the real world.
Collapse
Affiliation(s)
- Baoyuan Zhang
- State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, Shanghai Institute of HematologyNational Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Gao
- State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, Shanghai Institute of HematologyNational Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxi Zhao
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Jiang
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Shuang Xie
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Cuiping Zhang
- Department of Pathology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Qingyu Zhang
- Laboratory of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Leo Liu
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Zaiqi Wang
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Dongmei Ji
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ruibao Ren
- State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, Shanghai Institute of HematologyNational Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- International Center for Aging and Cancer, Hainan Medical University, Hainan Province, Haikou, China.
| |
Collapse
|
19
|
Hu HH, Wang SQ, Shang HL, Lv HF, Chen BB, Gao SG, Chen XB. Roles and inhibitors of FAK in cancer: current advances and future directions. Front Pharmacol 2024; 15:1274209. [PMID: 38410129 PMCID: PMC10895298 DOI: 10.3389/fphar.2024.1274209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that exhibits high expression in various tumors and is associated with a poor prognosis. FAK activation promotes tumor growth, invasion, metastasis, and angiogenesis via both kinase-dependent and kinase-independent pathways. Moreover, FAK is crucial for sustaining the tumor microenvironment. The inhibition of FAK impedes tumorigenesis, metastasis, and drug resistance in cancer. Therefore, developing targeted inhibitors against FAK presents a promising therapeutic strategy. To date, numerous FAK inhibitors, including IN10018, defactinib, GSK2256098, conteltinib, and APG-2449, have been developed, which have demonstrated positive anti-tumor effects in preclinical studies and are undergoing clinical trials for several types of tumors. Moreover, many novel FAK inhibitors are currently in preclinical studies to advance targeted therapy for tumors with aberrantly activated FAK. The benefits of FAK degraders, especially in terms of their scaffold function, are increasingly evident, holding promising potential for future clinical exploration and breakthroughs. This review aims to clarify FAK's role in cancer, offering a comprehensive overview of the current status and future prospects of FAK-targeted therapy and combination approaches. The goal is to provide valuable insights for advancing anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Hui-Hui Hu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Hai-Li Shang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Hui-Fang Lv
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Bei-Bei Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - She-Gan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Scianò F, Terrana F, Pecoraro C, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Exploring the therapeutic potential of focal adhesion kinase inhibition in overcoming chemoresistance in pancreatic ductal adenocarcinoma. Future Med Chem 2024; 16:271-289. [PMID: 38269431 DOI: 10.4155/fmc-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related deaths worldwide. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase often overexpressed in PDAC. FAK has been linked to cell migration, survival, proliferation, angiogenesis and adhesion. This review first highlights the chemoresistant nature of PDAC. Second, the role of FAK in PDAC cancer progression and resistance is carefully described. Additionally, it discusses recent developments of FAK inhibitors as valuable drugs in the treatment of PDAC, with a focus on diamine-substituted-2,4-pyrimidine-based compounds, which represent the most potent class of FAK inhibitors in clinical trials for the treatment of PDAC disease. To conclude, relevant computational studies performed on FAK inhibitors are reported to highlight the key structural features required for interaction with the protein, with the aim of optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Fabio Scianò
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Francesca Terrana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Barbara Parrino
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Patrizia Diana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, Pisa, 56017, Italy
| | - Daniela Carbone
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| |
Collapse
|
21
|
Xiong J, Xiao R, Zhao J, Zhao Q, Luo M, Li F, Zhang W, Wu M. Matrix stiffness affects tumor-associated macrophage functional polarization and its potential in tumor therapy. J Transl Med 2024; 22:85. [PMID: 38246995 PMCID: PMC10800063 DOI: 10.1186/s12967-023-04810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
The extracellular matrix (ECM) plays critical roles in cytoskeletal support, biomechanical transduction and biochemical signal transformation. Tumor-associated macrophage (TAM) function is regulated by matrix stiffness in solid tumors and is often associated with poor prognosis. ECM stiffness-induced mechanical cues can activate cell membrane mechanoreceptors and corresponding mechanotransducers in the cytoplasm, modulating the phenotype of TAMs. Currently, tuning TAM polarization through matrix stiffness-induced mechanical stimulation has received increasing attention, whereas its effect on TAM fate has rarely been summarized. A better understanding of the relationship between matrix stiffness and macrophage function will contribute to the development of new strategies for cancer therapy. In this review, we first introduced the overall relationship between macrophage polarization and matrix stiffness, analyzed the changes in mechanoreceptors and mechanotransducers mediated by matrix stiffness on macrophage function and tumor progression, and finally summarized the effects of targeting ECM stiffness on tumor prognosis to provide insight into this new field.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiahui Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qiuyan Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Manwen Luo
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Feng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, 430071, China.
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China.
| |
Collapse
|
22
|
Long Z, Zuo Y, Li R, Le Y, Dong Y, Yan L. Design, synthesis and biological evaluation of 4-arylamino-pyrimidine derivatives as focal adhesion kinase inhibitors. Bioorg Chem 2023; 140:106792. [PMID: 37633129 DOI: 10.1016/j.bioorg.2023.106792] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
A novel series of 4-arylamino-pyrimidine derivatives were designed and synthesized as focal adhesion kinase (FAK) inhibitors under the strategy of structure-based drug design. Most compounds performed excellent anti-proliferative activity against U87-MG cells. Especially, compounds 8d and 9b revealed the highest activity with IC50 values of 0.975 μM and 1.033 μM, which was much potent than the positive control TAE-226 (IC50 = 2.659 μM). On the other hand, the total 27 compounds exhibited low inhibition against human normal 2BS cells. Moreover, compounds 8d and 9b showed outstanding activity against FAK with IC50 values of 0.2438 nM and 0.2691 nM, which was very close to TAE-226 (IC50 = 0.1390 nM). Further studies proved that compounds 8d and 9b could induce U87-MG cell early apoptosis and arrest the cell at G2/M phase. The action mechanism indicated that they could significantly inhibit U87-MG cell clone formation, cell migration, and FAK phosphorylation. Molecular docking and molecular dynamics simulation investigations suggested that compounds 8d and 9b could firmly occupy the ATP binding site of FAK. These findings supported the further researches of compounds 8d and 9b as FAK inhibitors for antitumor drug discovery.
Collapse
Affiliation(s)
- Zhiwu Long
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yaqing Zuo
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Rongrong Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yi Le
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang 550025, China.
| |
Collapse
|
23
|
Zeng S, Yuan S, Zhang Y, Du J, Wu Y, Chen Y, Zhu P, Huang W. Discovery of novel pyrrolo [2,3-d] pyrimidine derivatives as potent FAK inhibitors based on cyclization strategy. Bioorg Chem 2023; 139:106713. [PMID: 37459823 DOI: 10.1016/j.bioorg.2023.106713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 08/13/2023]
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays a pivotal role in tumor invasion and metastasis. Many FAK inhibitors had been reported, but the development of FAK inhibitors in clinical studies are still limited. To facilitate the discovery of FAK modulators and further elucidate the role of FAK in cancer metastasis, it is necessary to discover a novel, potent and selective FAK inhibitor. In this study, a series of FAK inhibitors with novel scaffold were designed and synthesized based on cyclization strategy. Here, we reported compound 10b (HMC-18NH) with excellent inhibition of FAK (IC50 = 9.9 nM) and anticancer activity against several cancer cell lines including BxPC-3, PANC-1, MCF-7, MDA-MB-231, U-87MG, HepG2, HCT-15 and A549. Extraordinary, compound 10b showed the best cytotoxic effects against A549 with the IC50 value of 0.8 μM. In addition, 10b exhibited effective invasion and migration suppression in A549 cells. Further investigations revealed that compound 10b potently induced and promoted apoptosis in a dose-dependent manner and arrested A549 cells in the G2/M phase. Collectively, these results suggest that 10b is a promising FAK inhibitor and serve as a lead compound which deserve for further optimization.
Collapse
Affiliation(s)
- Shenxin Zeng
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Shuai Yuan
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yu Zhang
- School of Publish Health, Hangzhou Medical College, Hangzhou, Zhejiang 311399 China
| | - Jinbei Du
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yuhao Wu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yinqiao Chen
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Peizhen Zhu
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
| | - Wenhai Huang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China.
| |
Collapse
|
24
|
Steinberg T, Dieterle MP, Ramminger I, Klein C, Brossette J, Husari A, Tomakidi P. On the Value of In Vitro Cell Systems for Mechanobiology from the Perspective of Yes-Associated Protein/Transcriptional Co-Activator with a PDZ-Binding Motif and Focal Adhesion Kinase and Their Involvement in Wound Healing, Cancer, Aging, and Senescence. Int J Mol Sci 2023; 24:12677. [PMID: 37628858 PMCID: PMC10454169 DOI: 10.3390/ijms241612677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mechanobiology comprises how cells perceive different mechanical stimuli and integrate them into a process called mechanotransduction; therefore, the related mechanosignaling cascades are generally important for biomedical research. The ongoing discovery of key molecules and the subsequent elucidation of their roles in mechanobiology are fundamental to understanding cell responses and tissue conditions, such as homeostasis, aging, senescence, wound healing, and cancer. Regarding the available literature on these topics, it becomes abundantly clear that in vitro cell systems from different species and tissues have been and are extremely valuable tools for enabling the discovery and functional elucidation of key mechanobiological players. Therefore, this review aims to discuss the significant contributions of in vitro cell systems to the identification and characterization of three such key players using the selected examples of yes-associated protein (YAP), its paralog transcriptional co-activator with a PDZ-binding motif (TAZ), and focal adhesion kinase (FAK) and their involvement in wound healing, cancer, aging, and senescence. In addition, the reader is given suggestions as to which future prospects emerge from the in vitro studies discussed herein and which research questions still remain open.
Collapse
Affiliation(s)
- Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Charlotte Klein
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Julie Brossette
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| |
Collapse
|
25
|
Zheng H, Zhang M, Gao D, Zhang X, Cai H, Cui Z, Gao Y, Lv Z. PLA2R1 Inhibits Differentiated Thyroid Cancer Proliferation and Migration via the FN1-Mediated ITGB1/FAK Axis. Cancers (Basel) 2023; 15:2720. [PMID: 37345058 DOI: 10.3390/cancers15102720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 06/23/2023] Open
Abstract
PLA2R1 is a novel gene that is aberrantly expressed in a variety of malignancies. However, the role and mechanism of PLA2R1 in thyroid cancer has not been elucidated. We aimed to uncover the underlying mechanism of PLA2R1 in thyroid cancer. We collected 115 clinical specimens, including 54 tumor tissues and 61 para-cancerous tissues, who underwent surgical treatment at Shanghai Tenth Hospital. Immunohistochemical staining was used to evaluate PLA2R1 expression in differentiated thyroid cancer (DTC) tissues. The thyroid cancer cell lines 8505c and FTC133 transfected with PLA2R1 overexpression or knockdown plasmids were used for CCK8 assays and a wound healing assay. Next, we conducted coimmunoprecipitation (Co-IP) experiments and western blotting to explore the underlying mechanism of PLA2R1 in regulating the growth of thyroid cancer. We discovered that the expression of PLA2R1 was lower in the tumor tissues than in para-cancerous tissues (χ2 = 37.0, p < 0.01). The overexpression of PLA2R1 significantly suppressed thyroid cancer cell proliferation and migration, and both of these effects were partially attenuated by the knockdown of PLA2R1. Furthermore, the in vivo growth of DTC could be alleviated by the knockdown of PLA2R1. The mechanistic study revealed that PLA2R1 competed with FN1 for binding to ITGB1, inhibiting the FAK axis and epithelial-mesenchymal transition (EMT). We speculate that PLA2R1 might be a promising marker and a novel therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Mengyu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Dingwei Gao
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiaoying Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhijun Cui
- Department of Medicine Imaging, the Chongming Branch of Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
26
|
Chen Y, Gu Y, Hu H, Liu H, Li W, Huang C, Chen J, Liang L, Liu Y. Design, synthesis and biological evaluation of liposome entrapped iridium(III) complexes toward SGC-7901 cells. J Inorg Biochem 2023; 241:112134. [PMID: 36706490 DOI: 10.1016/j.jinorgbio.2023.112134] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
In this study, two new iridium(III) polypyridyl complexes [Ir(bzq)2(DIPH)](PF6) (bzq = deprotonated benzo[h]quinoline, DIPH = 4-(2,5-dibromo-4-(1H-imidazo[4,5-f][1,10]phenanthrolim-2-yl)-4-hydroxybutan-2-one) (Ir1) and [Ir(piq)2(DIPH)](PF6) (piq = deprotonated 1-phenylisoquinoline) (Ir2) were synthesized and characterized by elemental analysis, HRMS, 1H and 13C NMR. The cytotoxic activity of Ir1, Ir2, Ir1lipo and Ir2lipo against cancer cells SGC-7901, HepG2, A549, HeLa, B16 and normal NIH3T3 cells in vitro was evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. Ir1 and Ir2 showed no cytotoxic activity, but their liposome-entrapped Ir1 (Ir1lipo) and Ir2 (Ir2lipo) showed significant cellular activity, especially sensitive to SGC-7901 with IC50 values of 4.7 ± 0.2 and 12.4 ± 0.5 μM, respectively. The cellular uptake, endoplasmic reticulum (ER) localization, autophagy, tubulin polymerization, glutathione (GSH), malondialdehyde (MDA) and release of cytochrome c were investigated to explore the mechanisms of apoptosis. The calreticulin (CRT), heat shock protein 70 (HSP70), high mobility group box 1 (HMGB1) were also explored. Western blotting showed that Ir1lipo and Ir2lipo inhibited PI3K (phosphoinositide-3 kinase), AKT (protein kinase B), p-AKT and activated Bcl-2 (B-cell lymphoma-2) protein and apoptosis-regulated factor caspase 3 (cysteinyl aspartate specific proteinase-3) and cleaving PARP (poly ADP-ribose polymerase). The results demonstrated that Ir1lipo and Ir2lipo induce cell apoptosis through targeting the endoplasmic reticulum (ER), cause oxidative stress damage, inhibiting PI3K/AKT signaling pathway, immunogenic cell death (ICD) and inhibit the cell growth at G2/M phase.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yiying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
27
|
Design, synthesis and evaluation of nitric oxide releasing derivatives of 2,4-diaminopyrimidine as novel FAK inhibitors for intervention of metastatic triple-negative breast cancer. Eur J Med Chem 2023; 250:115192. [PMID: 36801517 DOI: 10.1016/j.ejmech.2023.115192] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
To search for novel medicines for intervention of triple-negative breast cancer (TNBC), a series of phenylsulfonyl furoxan-based 2,4-diaminopyrimidine derivatives (8a-t) were designed and synthesized based on blocking FAK-mediated signaling pathways through both kinase-dependent and -independent manners. The most active compound 8f not only significantly inhibited FAK kinase activity (IC50 = 27.44 nM), displayed potent inhibitory effects on the proliferation (IC50 = 0.126 μM), invasion and migration of MDA-MB-231 cells, superior to the most widely studied FAK inhibitor, TAE226, bearing 2,4-diaminopyrimidine, but also released high levels of NO, contributing to blockage of FAK mediated-signaling pathways by upregulating of p53 as well as suppressing the Y397 phosphorylation and its downstream effectors, including p-Akt, MMP-2, and MMP-9 via kinase-independent manner, leading to apoptosis induction and decrease of FAs and SFs in TNBC cells. Importantly, 8f inhibited the lung metastasis of TNBC in vivo. Together, 8f may serve as a promising candidate for the treatment of metastatic TNBC.
Collapse
|
28
|
Three-Dimensional-QSAR and Relative Binding Affinity Estimation of Focal Adhesion Kinase Inhibitors. Molecules 2023; 28:molecules28031464. [PMID: 36771129 PMCID: PMC9919860 DOI: 10.3390/molecules28031464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Precise binding affinity predictions are essential for structure-based drug discovery (SBDD). Focal adhesion kinase (FAK) is a member of the tyrosine kinase protein family and is overexpressed in a variety of human malignancies. Inhibition of FAK using small molecules is a promising therapeutic option for several types of cancer. Here, we conducted computational modeling of FAK-targeting inhibitors using three-dimensional structure-activity relationship (3D-QSAR), molecular dynamics (MD), and hybrid topology-based free energy perturbation (FEP) methods. The structure-activity relationship (SAR) studies between the physicochemical descriptors and inhibitory activities of the chemical compounds were performed with reasonable statistical accuracy using CoMFA and CoMSIA. These are two well-known 3D-QSAR methods based on the principle of supervised machine learning (ML). Essential information regarding residue-specific binding interactions was determined using MD and MM-PB/GBSA methods. Finally, physics-based relative binding free energy (ΔΔGRBFEA→B) terms of analogous ligands were estimated using alchemical FEP simulation. An acceptable agreement was observed between the experimental and computed relative binding free energies. Overall, the results suggested that using ML and physics-based hybrid approaches could be useful in synergy for the rational optimization of accessible lead compounds with similar scaffolds targeting the FAK receptor.
Collapse
|
29
|
Zhao Z, Liu L, Li S, Hou X, Yang J. Advances in research on the relationship between thymoquinone and pancreatic cancer. Front Oncol 2023; 12:1092020. [PMID: 36686732 PMCID: PMC9846546 DOI: 10.3389/fonc.2022.1092020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer has one of the worst prognoses among the most common cancers in the world. Its characteristics include a high rate of metastasis and chemotherapeutic resistance, which present major challenges to the medical community. The potential anticancer effects of thymoquinone (TQ), which is the main bioactive compound of the black seeds of the Nigella sativa plant, have recently received widespread attention for their potential use in treating pancreatic cancer. TQ can inhibit cell proliferation, promote cancer cell apoptosis, inhibit cell invasion and metastasis, enhance chemotherapeutic sensitivity, inhibit angiogenesis, and exert anti-inflammatory effects. These anticancer effects predominantly involve the nuclear factor (NF)-κB, phosphoinositide 3 kinase (PI3K)/Akt, Notch, transforming growth factor (TGF)-β, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways as well as the regulation of the cell cycle, matrix metallopeptidase (MMP)-9 expression, and pyruvate kinase isozyme type M2 (PKM2) activity. TQ regulates the occurrence and development of pancreatic cancer at multiple levels and through multiple targets that communicate with each other. In this review, we summarize and discuss the analogs and carriers of TQ that have been developed in recent years. Given its multilevel anticancer effects, TQ may become a new therapeutic drug for treating pancreatic cancer in the future. This review presents a brief introduction to the research that has been conducted on TQ in relation to pancreatic cancer to provide a theoretical basis for future studies on the topic.
Collapse
Affiliation(s)
- Zhanxue Zhao
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China,Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Linxun Liu
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Shuai Li
- Department of Clinical Pharmacy, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Xiaofan Hou
- Graduate school, Qinghai University, Xining, Qinghai, China
| | - Jinyu Yang
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China,*Correspondence: Jinyu Yang,
| |
Collapse
|