1
|
Tranter JD, Mikami RT, Kumar A, Brown G, Abd El-Aziz TM, Zhao Y, Abraham N, Meyer C, Ajanel A, Xie L, Ashworth K, Hong J, Zhang H, Kumari T, Balutowski A, Liu A, Bark D, Nair VK, Lasky NM, Feng Y, Stitziel NO, Lerner DJ, Campbell RA, Paola JD, Cho J, Sah R. LRRC8 complexes are adenosine nucleotide release channels regulating platelet activation and arterial thrombosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615233. [PMID: 39386563 PMCID: PMC11463368 DOI: 10.1101/2024.09.26.615233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Platelet shape and volume changes are early mechanical events contributing to platelet activation and thrombosis. Here, we identify single-nucleotide polymorphisms in Leucine-Rich Repeat Containing 8 (LRRC8) protein subunits that form the Volume-Regulated Anion Channel (VRAC) which are independently associated with altered mean platelet volume. LRRC8A is required for functional VRAC in megakaryocytes (MKs) and regulates platelet volume, adhesion, and agonist-stimulated activation, aggregation, ATP secretion and calcium mobilization. MK-specific LRRC8A cKO mice have reduced arteriolar thrombus formation and prolonged arterial thrombosis without affecting bleeding times. Mechanistically, platelet LRRC8A mediates swell-induced ATP/ADP release to amplify agonist-stimulated calcium and PI3K-AKT signaling via P2X1, P2Y 1 and P2Y 12 receptors. Small-molecule LRRC8 channel inhibitors recapitulate defects observed in LRRC8A-null platelets in vitro and in vivo . These studies identify the mechanoresponsive LRRC8 channel complex as an ATP/ADP release channel in platelets which regulates platelet function and thrombosis, providing a proof-of-concept for a novel anti-thrombotic drug target.
Collapse
|
2
|
Al-Saigh NN, Harb AA, Abdalla S. Receptors Involved in COVID-19-Related Anosmia: An Update on the Pathophysiology and the Mechanistic Aspects. Int J Mol Sci 2024; 25:8527. [PMID: 39126095 PMCID: PMC11313362 DOI: 10.3390/ijms25158527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Olfactory perception is an important physiological function for human well-being and health. Loss of olfaction, or anosmia, caused by viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received considerable attention, especially in persistent cases that take a long time to recover. This review discusses the integration of different components of the olfactory epithelium to serve as a structural and functional unit and explores how they are affected during viral infections, leading to the development of olfactory dysfunction. The review mainly focused on the role of receptors mediating the disruption of olfactory signal transduction pathways such as angiotensin converting enzyme 2 (ACE2), transmembrane protease serine type 2 (TMPRSS2), neuropilin 1 (NRP1), basigin (CD147), olfactory, transient receptor potential vanilloid 1 (TRPV1), purinergic, and interferon gamma receptors. Furthermore, the compromised function of the epithelial sodium channel (ENaC) induced by SARS-CoV-2 infection and its contribution to olfactory dysfunction are also discussed. Collectively, this review provides fundamental information about the many types of receptors that may modulate olfaction and participate in olfactory dysfunction. It will help to understand the underlying pathophysiology of virus-induced anosmia, which may help in finding and designing effective therapies targeting molecules involved in viral invasion and olfaction. To the best of our knowledge, this is the only review that covered all the receptors potentially involved in, or mediating, the disruption of olfactory signal transduction pathways during COVID-19 infection. This wide and complex spectrum of receptors that mediates the pathophysiology of olfactory dysfunction reflects the many ways in which anosmia can be therapeutically managed.
Collapse
Affiliation(s)
- Noor N. Al-Saigh
- Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman 16197, Jordan;
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Shtaywy Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
3
|
Yang Y, Yang W, Zhang R, Wang Y. Peripheral Mechanism of Cancer-Induced Bone Pain. Neurosci Bull 2024; 40:815-830. [PMID: 37798428 PMCID: PMC11178734 DOI: 10.1007/s12264-023-01126-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 10/07/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is a type of ongoing or breakthrough pain caused by a primary bone tumor or bone metastasis. CIBP constitutes a specific pain state with distinct characteristics; however, it shares similarities with inflammatory and neuropathic pain. At present, although various therapies have been developed for this condition, complete relief from CIBP in patients with cancer is yet to be achieved. Hence, it is urgent to study the mechanism underlying CIBP to develop efficient analgesic drugs. Herein, we focused on the peripheral mechanism associated with the initiation of CIBP, which involves tissue injury in the bone and changes in the tumor microenvironment (TME) and dorsal root ganglion. The nerve-cancer and cancer-immunocyte cross-talk in the TME creates circumstances that promote tumor growth and metastasis, ultimately leading to CIBP. The peripheral mechanism of CIBP and current treatments as well as potential therapeutic targets are discussed in this review.
Collapse
Affiliation(s)
- Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Zhongshan-Fudan Joint Innovation Center, Zhongshan, 528437, China.
| |
Collapse
|
4
|
Xie Z, Liu Y, Huang M, Zhong S, Lai W. Effects of antidiabetic agents on platelet characteristics with implications in Alzheimer's disease: Mendelian randomization and colocalization study. Heliyon 2024; 10:e30909. [PMID: 38778961 PMCID: PMC11108824 DOI: 10.1016/j.heliyon.2024.e30909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Background Observational studies have found a potential link between the use of thiazolidinediones (TZDs) and a lower risk of Alzheimer's disease (AD) development. Platelets were the great source of amyloid-β (Aβ) and involved in the development of AD. This study aimed to assess the correlation between antidiabetic agents and platelet characteristics, hoping to provide a potential mechanism of TZDs neuroprotection in AD. Method Drug-targeted Mendelian randomization (MR) was performed to systematically illustrate the long-term effects of antidiabetic agents on platelet characteristics. Four antidiabetic agent targets were considered. Positive control analysis for type 2 diabetes (T2D) was conducted to validate the selection of instrumental variables (IVs). Colocalization analysis was used to further strengthen the robustness of the results. Result Positive control analysis showed an association of four antidiabetic agents with lower risk of T2D, which was consistent with their mechanisms of action and previous evidence from clinical trials. Genetically proxied TZDs were associated with lower platelet count (β[IRNT] = -0.410 [95 % CI -0.533 to -0.288], P = 5.32E-11) and a lower plateletcrit (β[IRNT] = -0.344 [95 % CI -0.481 to -0.206], P = 1.04E-6). Colocalization suggested the posterior probability of hypothesis 4 (PPH4) > 0.8, which further strengthened the MR results. Conclusion Genetically proxied TZDs were causally associated with lower platelet characteristics, particularly platelet count and plateletcrit, providing insight into the involvement of platelet-related pathways in the neuroprotection of TZDs against AD. Future studies are warranted to reveal the underlying molecular mechanism of TZDs' neuroprotective effects through platelet pathways.
Collapse
Affiliation(s)
- Zhipeng Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yijie Liu
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shilong Zhong
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Weihua Lai
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Yadalam PK, Natarajan PM, Mosaddad SA, Heboyan A. Graph neural networks-based prediction of drug gene association of P2X receptors in periodontal pain. J Oral Biol Craniofac Res 2024; 14:335-338. [PMID: 38680473 PMCID: PMC11053325 DOI: 10.1016/j.jobcr.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
The P2X7 receptor, a member of the P2X receptor family, plays a crucial role in various physiological processes, particularly pain perception. Its expression across immune, neuronal, and glial cells facilitates the release of pro-inflammatory molecules, thereby influencing pain development and maintenance, as evidenced by its association with pulpitis in rats. Notably, P2X receptors such as P2X3 and P2X7 are pivotal in dental pain pathways, making them promising targets for novel analgesic interventions. Leveraging graph neural networks (GNNs) presents an innovative approach to model graph data, aiding in the identification of drug targets and prediction of their efficacy, complementing advancements in genomics and proteomics for therapeutic development. In this study, 921 drug-gene interactions involving P2X receptors were accessed through https://www.probes-drugs.org/. These interactions underwent meticulous annotation, preprocessing, and subsequent utilization to train and assess GNNs. Furthermore, leveraging Cytoscape, the CytoHubba plugin, and other bioinformatics tools, gene expression networks were constructed to pinpoint hub genes within these interactions. Through analysis, SLC6A3, SLC6A2, FGF1, GRK2, and PLA2G2A were identified as central hub genes within the context of P2X receptor-mediated drug-gene interactions. Despite achieving a 65 percent accuracy rate, the GNN model demonstrated suboptimal predictive power for gene-drug interactions associated with oral pain. Hence, further refinements and enhancements are imperative to unlock its full potential in elucidating and targeting pathways underlying oral pain mechanisms.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Vinci M, Vitello GA, Greco D, Treccarichi S, Ragalmuto A, Musumeci A, Fallea A, Federico C, Calì F, Saccone S, Elia M. Next Generation Sequencing and Electromyography Reveal the Involvement of the P2RX6 Gene in Myopathy. Curr Issues Mol Biol 2024; 46:1150-1163. [PMID: 38392191 PMCID: PMC10887510 DOI: 10.3390/cimb46020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Ion channelopathies result from impaired ion channel protein function, due to mutations affecting ion transport across cell membranes. Over 40 diseases, including neuropathy, pain, migraine, epilepsy, and ataxia, are associated with ion channelopathies, impacting electrically excitable tissues and significantly affecting skeletal muscle. Gene mutations affecting transmembrane ionic flow are strongly linked to skeletal muscle disorders, particularly myopathies, disrupting muscle excitability and contraction. Electromyography (EMG) analysis performed on a patient who complained of weakness and fatigue revealed the presence of primary muscular damage, suggesting an early-stage myopathy. Whole exome sequencing (WES) did not detect potentially causative variants in known myopathy-associated genes but revealed a novel homozygous deletion of the P2RX6 gene likely disrupting protein function. The P2RX6 gene, predominantly expressed in skeletal muscle, is an ATP-gated ion channel receptor belonging to the purinergic receptors (P2RX) family. In addition, STRING pathways suggested a correlation with more proteins having a plausible role in myopathy. No previous studies have reported the implication of this gene in myopathy. Further studies are needed on patients with a defective ion channel pathway, and the use of in vitro functional assays in suppressing P2RX6 gene expression will be required to validate its functional role.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | | | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | | |
Collapse
|
7
|
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 2023:10.1007/s00281-023-00987-3. [PMID: 36917241 DOI: 10.1007/s00281-023-00987-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
8
|
Blocking P2RX7 Attenuates Ferroptosis in Endothelium and Reduces HG-induced Hemorrhagic Transformation After MCAO by Inhibiting ERK1/2 and P53 Signaling Pathways. Mol Neurobiol 2023; 60:460-479. [PMID: 36282438 DOI: 10.1007/s12035-022-03092-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 02/08/2023]
Abstract
Hyperglycemia is a risk factor for poor prognosis after acute ischemic stroke and promote the occurrence of hemorrhagic transformation (HT). The activation of P2RX7 play an important role in endotheliocyte damage and BBB disruption. Ferroptosis is a novel pattern of programmed cell death caused by the accumulation of intracellular iron and lipid peroxidation, resulting in ROS production and cell death. This study is to explore the mechanism of P2RX7 in reducing HT pathogenesis after acute ischemic stroke through regulating endotheliocyte ferroptosis. Male SD rats were performed to establish middle cerebral artery occlusion (MCAO) model injected with 50% high glucose (HG) and HUVECs were subjected to OGD/R treated with high glucose (30 mM) for establishing HT model in vivo and in vitro. P2RX7 inhibitor (BBG), and P2RX7 small interfering RNAs (siRNA) were used to investigate the role of P2RX7 in BBB after MCAO in vivo and OGD/R in vitro, respectively. The neurological deficits, infarct volume, degree of intracranial hemorrhage, integrity of the BBB, immunoblotting, and immunofluorescence were evaluated at 24 h after MCAO. Our study found that the level of P2RX7 was gradually increased after MCAO and/or treated with HG. Our results showed that treatment with HG after MCAO can aggravate neurological deficits, infarct volume, oxidative stress, iron accumulation, and BBB injury in HT model, and HG-induced HUVECs damage. The inhibition of P2RX7 reversed the damage effect of HG, significantly downregulated the expression level of P53, HO-1, and p-ERK1/2 and upregulated the level of SLC7A11 and GPX4, which implicated that P2RX7 inhibition could attenuate oxidative stress and ferroptosis of endothelium in vivo and in vitro. Our data provided evidence that the P2RX7 play an important role in HG-associated oxidative stress, endothelial damage, and BBB disruption, which regulates HG-induced HT by ERK1/2 and P53 signaling pathways after MCAO.
Collapse
|
9
|
Kiełbowski K, Bakinowska E, Pawlik A. The Potential Role of Connexins in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032600. [PMID: 36768920 PMCID: PMC9916887 DOI: 10.3390/ijms24032600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Connexins (Cx) are members of a protein family which enable extracellular and intercellular communication through hemichannels and gap junctions (GJ), respectively. Cx take part in transporting important cell-cell messengers such as 3',5'-cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP), and inositol 1,4,5-trisphosphate (IP3), among others. Therefore, they play a significant role in regulating cell homeostasis, proliferation, and differentiation. Alterations in Cx distribution, degradation, and post-translational modifications have been correlated with cancers, as well as cardiovascular and neurological diseases. Depending on the isoform, Cx have been shown either to promote or suppress the development of atherosclerosis, a progressive inflammatory disease affecting large and medium-sized arteries. Cx might contribute to the progression of the disease by enhancing endothelial dysfunction, monocyte recruitment, vascular smooth muscle cell (VSMC) activation, or by inhibiting VSMC autophagy. Inhibition or modulation of the expression of specific isoforms could suppress atherosclerotic plaque formation and diminish pro-inflammatory conditions. A better understanding of the complexity of atherosclerosis pathophysiology linked with Cx could result in developing novel therapeutic strategies. This review aims to present the role of Cx in the pathogenesis of atherosclerosis and discusses whether they can become novel therapeutic targets.
Collapse
|