1
|
Miller LB, Feuz MB, Meyer RG, Meyer-Ficca ML. Reproductive toxicology: keeping up with our changing world. FRONTIERS IN TOXICOLOGY 2024; 6:1456687. [PMID: 39463893 PMCID: PMC11502475 DOI: 10.3389/ftox.2024.1456687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Reproductive toxicology testing is essential to safeguard public health of current and future generations. Traditional toxicological testing of male reproduction has focused on evaluating substances for acute toxicity to the reproductive system, with fertility assessment as a main endpoint and infertility a main adverse outcome. Newer studies in the last few decades have significantly widened our understanding of what represents an adverse event in reproductive toxicology, and thus changed our perspective of what constitutes a reproductive toxicant, such as endocrine disrupting chemicals that affect fertility and offspring health in an intergenerational manner. Besides infertility or congenital abnormalities, adverse outcomes can present as increased likelihood for various health problems in offspring, including metabolic syndrome, neurodevelopmental problems like autism and increased cancer predisposition, among others. To enable toxicologic studies to accurately represent the population, toxicologic testing designs need to model changing population characteristics and exposure circumstances. Current trends of increasing importance in human reproduction include increased paternal age, with an associated decline of nicotinamide adenine dinucleotide (NAD), and a higher prevalence of obesity, both of which are factors that toxicological testing study design should account for. In this perspective article, we highlighted some limitations of standard testing protocols, the need for expanding the assessed reproductive endpoint by including genetic and epigenetic sperm parameters, and the potential of recent developments, including mixture testing, novel animal models, in vitro systems like organoids, multigenerational testing protocols, as well as in silico modelling, machine learning and artificial intelligence.
Collapse
Affiliation(s)
| | | | | | - Mirella L. Meyer-Ficca
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| |
Collapse
|
2
|
Burgoon LD, Kluxen FM, Hüser A, Frericks M. The database makes the poison: How the selection of datasets in QSAR models impacts toxicant prediction of higher tier endpoints. Regul Toxicol Pharmacol 2024; 151:105663. [PMID: 38871173 DOI: 10.1016/j.yrtph.2024.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
As the United States and the European Union continue their steady march towards the acceptance of new approach methodologies (NAMs), we need to ensure that the available tools are fit for purpose. Critics will be well-positioned to caution against NAMs acceptance and adoption if the tools turn out to be inadequate. In this paper, we focus on Quantitative Structure Activity-Relationship (QSAR) models and highlight how the training database affects quality and performance of these models. Our analysis goes to the point of asking, "are the endpoints extracted from the experimental studies in the database trustworthy, or are they false negatives/positives themselves?" We also discuss the impacts of chemistry on QSAR models, including issues with 2-D structure analyses when dealing with isomers, metabolism, and toxicokinetics. We close our analysis with a discussion of challenges associated with translational toxicology, specifically the lack of adverse outcome pathways/adverse outcome pathway networks (AOPs/AOPNs) for many higher tier endpoints. We recognize that it takes a collaborate effort to build better and higher quality QSAR models especially for higher tier toxicological endpoints. Hence, it is critical to bring toxicologists, statisticians, and machine learning specialists together to discuss and solve these challenges to get relevant predictions.
Collapse
|
3
|
Ghosh S, Roy K. Quantitative read-across structure-activity relationship (q-RASAR): A novel approach to estimate the subchronic oral safety (NOAEL) of diverse organic chemicals in rats. Toxicology 2024; 505:153824. [PMID: 38705560 DOI: 10.1016/j.tox.2024.153824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
We have developed a quantitative safety prediction model for subchronic repeated doses of diverse organic chemicals on rats using the novel quantitative read-across structure-activity relationship (q-RASAR) approach, which uses similarity-based descriptors for predictive model generation. The experimental -Log (NOAEL) values have been used here as a potential indicator of oral subchronic safety on rats as it determines the maximum dose level for which no observed adverse effects of chemicals are found. A total of 186 data points of diverse organic chemicals have been used for the model generation using structural and physicochemical (0D-2D) descriptors. The read-across-derived similarity, error, and concordance measures (RASAR descriptors) have been extracted from the preliminary 0D-2D descriptors. Then, the combined pool of RASAR and the identified 0D-2D descriptors of the training set were employed to develop the final models by using the partial least squares (PLS) algorithm. The developed PLS model was rigorously validated by various internal and external validation metrics as suggested by the Organization for Economic Co-operation and Development (OECD). The final q-RASAR model is proven to be statistically sound, robust and externally predictive (R2 = 0.85, Q2LOO = 0.82 and Q2F1 = 0.94), superseding the internal as well as external predictivity of the corresponding quantitative structure-activity relationship (QSAR) model as well as previously reported subchronic repeated dose toxicity model found in the literature. In a nutshell, the q-RASAR is an effective approach that has the potential to be used as a good alternative way to improve external predictivity, interpretability, and transferability for subchronic oral safety prediction as well as ecotoxicity risk identification.
Collapse
Affiliation(s)
- Shilpayan Ghosh
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
4
|
Ouabane M, Zaki K, Tabti K, Alaqarbeh M, Sbai A, Sekkate C, Bouachrine M, Lakhlifi T. Molecular toxicity of nitrobenzene derivatives to tetrahymena pyriformis based on SMILES descriptors using Monte Carlo, docking, and MD simulations. Comput Biol Med 2024; 169:107880. [PMID: 38211383 DOI: 10.1016/j.compbiomed.2023.107880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
It is challenging to model the toxicity of nitroaromatic compounds due to limited experimental data. Nitrobenzene derivatives are commonly used in industry and can lead to environmental contamination. Extensive research, including several QSPR studies, has been conducted to understand their toxicity. Predictive QSPR models can help improve chemical safety, but their limitations must be considered, and the molecular factors affecting toxicity should be carefully investigated. The latest QSPR methods, molecular modeling techniques, machine learning algorithms, and computational chemistry tools are essential for developing accurate and robust models. In this work, we used these methods to study a series of fifty compounds derived from nitrobenzene. The Monte Carlo approach was used for QSPR modeling by applying the SMILES molecular structure representation and optimal molecular descriptors. The correlation ideality index (CII) and correlation contradiction index (CCI) were further introduced as validation parameters to estimate the developed models' predictive ability. The statistical quality of the CII models was better than those without CII. The best QSPR model with the following statistical parameters (Split-3): (R2 = 0.968, CCC = 0.984, IIC = 0.861, CII = 0.979, Q2 = 0.954, QF12 = 0.946, QF22 = 0.938, QF32 = 0.947, Rm2 = 0.878, RMSE = 0.187, MAE = 0.151, FTraining = 390, FInvisible = 218, FCalibration = 240, RTest2 = 0.905) was selected to generate the studied promoters with increasing and decreasing activity.
Collapse
Affiliation(s)
- Mohamed Ouabane
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, Moulay Ismail University, Meknes, Morocco; Chemistry-Biology Applied to the Environment URL CNRT 13, Chemistry Department, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Khadija Zaki
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Kamal Tabti
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Marwa Alaqarbeh
- Basic Science Department, Prince Al Hussein Bin Abdullah II Academy for Civil Protection, Al-Balqa Applied University, Al-Salt, 19117, Jordan
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Chakib Sekkate
- Chemistry-Biology Applied to the Environment URL CNRT 13, Chemistry Department, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, Moulay Ismail University, Meknes, Morocco; Higher School of Technology-Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, PB 170, Khenifra, 54000, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, Moulay Ismail University, Meknes, Morocco.
| |
Collapse
|
5
|
Danieli A, Colombo E, Raitano G, Lombardo A, Roncaglioni A, Manganaro A, Sommovigo A, Carnesecchi E, Dorne JLCM, Benfenati E. The VEGA Tool to Check the Applicability Domain Gives Greater Confidence in the Prediction of In Silico Models. Int J Mol Sci 2023; 24:9894. [PMID: 37373049 PMCID: PMC10298077 DOI: 10.3390/ijms24129894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
A sound assessment of in silico models and their applicability domain can support the use of new approach methodologies (NAMs) in chemical risk assessment and requires increasing the users' confidence in this approach. Several approaches have been proposed to evaluate the applicability domain of such models, but their prediction power still needs a thorough assessment. In this context, the VEGA tool capable of assessing the applicability domain of in silico models is examined for a range of toxicological endpoints. The VEGA tool evaluates chemical structures and other features related to the predicted endpoints and is efficient in measuring applicability domain, enabling the user to identify less accurate predictions. This is demonstrated with many models addressing different endpoints, towards toxicity of relevance to human health, ecotoxicological endpoints, environmental fate, physicochemical and toxicokinetic properties, for both regression models and classifiers.
Collapse
Affiliation(s)
- Alberto Danieli
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant 3, 21100 Varese, Italy;
| | - Erika Colombo
- Laboratory of Environmental Toxicology and Chemistry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCSS, 20156 Milano, Italy; (E.C.); (G.R.); (A.L.); (E.B.)
| | - Giuseppa Raitano
- Laboratory of Environmental Toxicology and Chemistry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCSS, 20156 Milano, Italy; (E.C.); (G.R.); (A.L.); (E.B.)
| | - Anna Lombardo
- Laboratory of Environmental Toxicology and Chemistry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCSS, 20156 Milano, Italy; (E.C.); (G.R.); (A.L.); (E.B.)
| | - Alessandra Roncaglioni
- Laboratory of Environmental Toxicology and Chemistry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCSS, 20156 Milano, Italy; (E.C.); (G.R.); (A.L.); (E.B.)
| | | | | | - Edoardo Carnesecchi
- European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126 Parma, Italy; (E.C.); (J.-L.C.M.D.)
| | - Jean-Lou C. M. Dorne
- European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126 Parma, Italy; (E.C.); (J.-L.C.M.D.)
| | - Emilio Benfenati
- Laboratory of Environmental Toxicology and Chemistry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCSS, 20156 Milano, Italy; (E.C.); (G.R.); (A.L.); (E.B.)
| |
Collapse
|
6
|
Rescifina A. Progress of the "Molecular Informatics" Section in 2022. Int J Mol Sci 2023; 24:ijms24119442. [PMID: 37298393 DOI: 10.3390/ijms24119442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
This is the first Editorial of the "Molecular Informatics" Section (MIS) of the International Journal of Molecular Sciences (IJMS), which was created towards the end of 2018 (the first article was submitted on 27 September 2018) and has experienced significant growth from 2018 to now [...].
Collapse
Affiliation(s)
- Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
7
|
Toropova AP, Toropov AA, Fjodorova N. In Silico Simulation of Impacts of Metal Nano-Oxides on Cell Viability in THP-1 Cells Based on the Correlation Weights of the Fragments of Molecular Structures and Codes of Experimental Conditions Represented by Means of Quasi-SMILES. Int J Mol Sci 2023; 24:ijms24032058. [PMID: 36768396 PMCID: PMC9917241 DOI: 10.3390/ijms24032058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
A simulation of the effect of metal nano-oxides at various concentrations (25, 50, 100, and 200 milligrams per millilitre) on cell viability in THP-1 cells (%) based on data on the molecular structure of the oxide and its concentration is proposed. We used a simplified molecular input-line entry system (SMILES) to represent the molecular structure. So-called quasi-SMILES extends usual SMILES with special codes for experimental conditions (concentration). The approach based on building up models using quasi-SMILES is self-consistent, i.e., the predictive potential of the model group obtained by random splits into training and validation sets is stable. The Monte Carlo method was used as a basis for building up the above groups of models. The CORAL software was applied to building the Monte Carlo calculations. The average determination coefficient for the five different validation sets was R2 = 0.806 ± 0.061.
Collapse
Affiliation(s)
- Alla P. Toropova
- Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milano, Italy
- Correspondence: ; Tel.: +39-02-3901-4595
| | - Andrey A. Toropov
- Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milano, Italy
| | | |
Collapse
|