1
|
Wei Y, Zhang S, Shao F, Sun Y. Ankylosing spondylitis: From pathogenesis to therapy. Int Immunopharmacol 2025; 145:113709. [PMID: 39644789 DOI: 10.1016/j.intimp.2024.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that primarily affects the axial joints, with its etiology complex and still not fully understood. The unknown pathogenesis of AS limits the development of treatment strategies, so keeping up-to-date with the current research on AS can help in searching for potential therapeutic targets. In addition to the classic HLA-B27 genetic susceptibility and Th17-related inflammatory signals, increasing research is focusing on the influence of autoantigen-centered autoimmune responses and bone stromal cells on the onset of AS. Autoantigens derived from gut microbiota and preferential TCR both exacerbate the autoimmune response in patients with AS. Furthermore, dysregulated bone metabolism also promotes pathological new bone formation in AS. Current treatments approved for AS almost focus on the management of inflammation with inconsistent treatment results due to the heterogeneity of patients. In this review, we systematically summarized various pathogenesis and management of AS, meanwhile discussed the underlying risk factors and potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxiao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Shuqiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Fenli Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Angelopoulos* A, Kouverianos* I, Daoussis D. The Paradox of Osteoporosis in Spondyloarthropathies. Mediterr J Rheumatol 2024; 35:528-533. [PMID: 39974592 PMCID: PMC11834996 DOI: 10.31138/mjr.270924.poa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 02/21/2025] Open
Abstract
Introduction Spondyloarthropathies (SpA) are a family of inflammatory disorders that affect the spine and peripheral joints. The most common representatives are axial Spondylarthritis (axSpA) and Psoriatic Arthritis (PsA). Despite the fact that SpA are characterised by new bone formation, paradoxically, total Bone Mineral Density (BMD) may be decreased. Methods An electronic search was conducted on Medline in order to explore the prevalence, risk factors and pathophysiology of Osteoporosis (OP) in SpA patients. Results The prevalence of OP globally is reported to be 18.3%. The prevalence of OP in Axial Spondylarthritis (axSpA) patients ranges from 11.7% to 34.4%, while in Psoriatic Arthritis (PsA) patients seems to be similar to the general population. Several factors have been proposed for the development of OP in SpA, such as corticosteroid use and physical inactivity. Moreover, systemic inflammation appears to participate in the pathophysiology of OP with inflammatory cytokines such as Tumour Necrosis Factor (TNF) and Interleukin (IL)-23/IL-17 potentially having a key role in the pathogenesis of bone loss. Discussion The current literature points to the direction that OP is an established comorbidity in axSpA. Local or/and systemic inflammation is possibly the main pathway contributing to bone loss in axSpA patients. However, it remains unclear whether OP is an established comorbidity in PsA patients, as it seems that OP is a treatment-associated adverse event.
Collapse
Affiliation(s)
| | | | - Dimitrios Daoussis
- Department of Rheumatology, Patras University Hospital, University of Patras Medical School, Patras, Greece
| |
Collapse
|
3
|
Sun X, Deng Y, Ni M, Zhang T, Wang X, Wu Y, Shuai Z, Pan F. Aberrant DNA Methylation Profile of Dickkopf-1 in Ankylosing Spondylitis. Biochem Genet 2024; 62:4603-4618. [PMID: 38347292 DOI: 10.1007/s10528-024-10675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/02/2024] [Indexed: 11/29/2024]
Abstract
In recent years, the impact of methylation modifications on Dickkopf-1 (DKK1) in relation to ankylosing spondylitis (AS) has remained elusive. Our objective was to investigate the potential link between DKK1 methylation patterns and transcript levels and AS susceptibility. DNA methylation level of DKK1 was measured in 82 AS and 82 healthy controls (HCs) using targeted bisulfite sequencing. In addition, the transcript level of DKK1 in peripheral blood mononuclear cells from 35 AS patients and 35 HCs was detected using real-time quantitative transcription-polymerase chain reaction. Our study showed that the DKK1 was significantly hypomethylated in AS patients (P < 0.001). The Receiver operating characteristic curve (ROC) showed that DKK1 methylation may be a potential biomarker. The results showed that the difference in DKK1 transcript levels between AS and HCs was not statistically significant. Further analysis showed that DKK1 methylation levels were positively correlated with age and negatively correlated with C-reactive protein levels, neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR). The methylation level of DKK1 in PBMC of AS patients was significantly lower than that of HCs, and DKK1 methylation may be associated with susceptibility to AS. In addition, DNA methylation levels of DKK1 were negatively correlated with the level of inflammation in AS patients.
Collapse
Affiliation(s)
- Xiaoya Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yujie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Man Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ye Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Shatunova EA, Rychkova AS, Meschaninova MI, Kabilov MR, Tupikin AE, Kurochkina YD, Korolev MA, Vorobyeva MA. Novel DNA Aptamers to Dickkopf-1 Protein and Their Application in Colorimetric Sandwich Assays for Target Detection in Patients with Axial Spondyloarthritis. Int J Mol Sci 2024; 25:12214. [PMID: 39596285 PMCID: PMC11594316 DOI: 10.3390/ijms252212214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic immunoinflammatory rheumatic diseases, such as axial spondyloarthritis (AxSpA), are accompanied by a dysregulation of bone remodeling. Among potential biomarkers of bone metabolism, the Wnt pathway antagonist, Dickkopf-1 (DKK-1), is of particular interest because of its potential to reflect a shift towards joint ossification or osteoporosis, but its diagnostic value needs validation. There is still a lack of stable and efficient methods of measuring serum DKK-1 levels suitable for longitude studies. The use of aptamer-based diagnostic assays could be very promising for this purpose. We generated novel anti-DKK-1 DNA aptamers from a combinatorial library with a pre-defined sequence pattern in the randomized region. This approach showed high efficacy, as only four SELEX rounds of selection produced high-affinity aptamers with dissociation constants ranging from 1.3 to 3.7 nM. A family of their truncated versions was also developed by rational design. Novel DNA aptamers functioned as capture components in a microplate ELISA-like assay with HRP-conjugated anti-DKK-1 antibody as a reporter component. We succeeded in revealing the aptamer/aptamer sandwich pairs that provided an aptamer-only sandwich colorimetric assay. The aptamer/antibody colorimetric test systems were also examined in the analyses of blood serum from AxSpA patients and shown sufficient workability. However, in a number of cases we registered significant differences between assays based on TD10 and DK4 aptamers and made some suggestions about the origin of this effect.
Collapse
Affiliation(s)
- Elizaveta A. Shatunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk 630090, Russia; (E.A.S.); (M.I.M.); (M.R.K.); (M.A.K.)
| | - Anastasia S. Rychkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk 630090, Russia; (E.A.S.); (M.I.M.); (M.R.K.); (M.A.K.)
| | - Mariya I. Meschaninova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk 630090, Russia; (E.A.S.); (M.I.M.); (M.R.K.); (M.A.K.)
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk 630090, Russia; (E.A.S.); (M.I.M.); (M.R.K.); (M.A.K.)
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk 630090, Russia; (E.A.S.); (M.I.M.); (M.R.K.); (M.A.K.)
| | - Yuliya D. Kurochkina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk 630090, Russia; (E.A.S.); (M.I.M.); (M.R.K.); (M.A.K.)
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Timakova St. 2, Novosibirsk 630060, Russia
| | - Maksim A. Korolev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk 630090, Russia; (E.A.S.); (M.I.M.); (M.R.K.); (M.A.K.)
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Timakova St. 2, Novosibirsk 630060, Russia
| | - Mariya A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk 630090, Russia; (E.A.S.); (M.I.M.); (M.R.K.); (M.A.K.)
| |
Collapse
|
5
|
Zhao D, Wu L, Hong M, Zheng S, Wu X, Ye H, Chen F, Zhang D, Liu X, Meng X, Chen X, Chen S, Zhu J, Li J. DKK-1 and Its Influences on Bone Destruction: A Comparative Study in Collagen-Induced Arthritis Mice and Rheumatoid Arthritis Patients. Inflammation 2024; 47:129-144. [PMID: 37688661 DOI: 10.1007/s10753-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Dickkopf-1 (DKK-1) has been considered a master regulator of bone remodeling. As precursors of osteoclasts (OCs), myeloid-derived suppressor cells (MDSCs) were previously shown to participate in the process of bone destruction in rheumatoid arthritis (RA). However, the role of DKK-1 and MDSCs in RA is not yet fully understood. We investigated the relevance between the level of DKK-1 and the expression of MDSCs in different tissues and joint destruction in RA patients and collagen-induced arthritis (CIA) mouse models. Furthermore, the CIA mice were administered recombinant DKK-1 protein. The arthritis scores, bone destruction, and the percentage of MDSCs in the peripheral blood and spleen were monitored. In vitro, the differentiation of MDSCs into OCs was intervened with recombinant protein and inhibitor of DKK-1. The number of OCs differentiated and the protein expression of the Wnt/β-catenin signaling pathway were explored. The level of DKK-1 positively correlates with the frequency of MDSCs and bone erosion in RA patients and CIA mice. Strikingly, recombinant DKK-1 intervention significantly exacerbated arthritis scores and bone destruction, increasing the percentage of MDSCs in the peripheral blood and spleen in CIA mice. In vitro experiments showed that recombinant DKK-1 promoted the differentiation of MDSCs into OCs, reducing the expression of β-catenin and TCF4 and increasing the expression of CyclinD1. In contrast, the DKK-1 inhibitor had the opposite effect. Our findings highlight that DKK-1 promoted MDSCs expansion in RA and enhanced the differentiation of MDSCs into OCs via targeting the Wnt/β-catenin pathway, aggravating the bone destruction in RA.
Collapse
Affiliation(s)
- Di Zhao
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lisheng Wu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mukeng Hong
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Songyuan Zheng
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xianghui Wu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixin Ye
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Feilong Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Dingding Zhang
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinhang Liu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiangyun Meng
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyun Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shixian Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqing Zhu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Juan Li
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Sun W, Lv J, Guo S, Lv M. Cellular microenvironment: a key for tuning mesenchymal stem cell senescence. Front Cell Dev Biol 2023; 11:1323678. [PMID: 38111850 PMCID: PMC10725964 DOI: 10.3389/fcell.2023.1323678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to self-renew and differentiate into multiple cell types, making them highly suitable for use as seed cells in tissue engineering. These can be derived from various sources and have been found to play crucial roles in several physiological processes, such as tissue repair, immune regulation, and intercellular communication. However, the limited capacity for cell proliferation and the secretion of senescence-associated secreted phenotypes (SASPs) pose challenges for the clinical application of MSCs. In this review, we provide a comprehensive summary of the senescence characteristics of MSCs and examine the different features of cellular microenvironments studied thus far. Additionally, we discuss the mechanisms by which cellular microenvironments regulate the senescence process of MSCs, offering insights into preserving their functionality and enhancing their effectiveness.
Collapse
Affiliation(s)
| | | | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Sakellariou GT, Konsta M, Katsigianni I, Deligeorgakis D, Zisopoulos D, Vounotrypidis P. Effect of secukinumab on bone formation markers in patients with active ankylosing spondylitis. Int J Rheum Dis 2023; 26:2603-2606. [PMID: 37432022 DOI: 10.1111/1756-185x.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/07/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Affiliation(s)
| | - Maria Konsta
- Department of Rheumatology, Sismanoglio Hospital, Athens, Greece
| | - Ioanna Katsigianni
- Department of Rheumatology, 424 General Army Hospital, Thessaloniki, Greece
| | | | | | | |
Collapse
|
8
|
Feng X, Qiao J, Xu W. Impact of immune regulation and differentiation dysfunction of mesenchymal stem cells on the disease process in ankylosing spondylitis and prospective analysis of stem cell transplantation therapy. Postgrad Med J 2023; 99:1138-1147. [PMID: 37689998 DOI: 10.1093/postmj/qgad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
Ankylosing spondylitis (AS) is a rheumatic bone and joint disease caused by inflammation, erosion, and pathological bone formation. The pathological features of chronic inflammation, bone destruction, and pathological ossification occur due to the disruption of the body's immune regulation and altered bone remodeling balance. Mesenchymal stem cells (MSCs) have multidirectional differentiation potential and immunomodulatory functions and play an important role in immune regulation and bone formation. The immune regulation and osteogenic capacity of MSCs in AS are altered by factors such as genetic background, internal environment, infection, and mechanical forces that drive disease development. This review further evaluates the role of MSCs dysfunction in inflammation and pathological bone formation by analyzing the effects of the above-mentioned factors on MSCs function and also looks forward to the prospects of MSCs in treating AS, providing some ideas for an in-depth study of inflammation and ectopic ossification. KEY MESSAGES
Collapse
Affiliation(s)
- Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Junjie Qiao
- Department of Joint Bone Disease Surgery, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Weidong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
9
|
Fassio A, Atzeni F, Rossini M, D’Amico V, Cantatore F, Chimenti MS, Crotti C, Frediani B, Giusti A, Peluso G, Rovera G, Scolieri P, Raimondo V, Gatti D. Osteoimmunology of Spondyloarthritis. Int J Mol Sci 2023; 24:14924. [PMID: 37834372 PMCID: PMC10573470 DOI: 10.3390/ijms241914924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The mechanisms underlying the development of bone damage in the context of spondyloarthritis (SpA) are not completely understood. To date, a considerable amount of evidence indicates that several developmental pathways are crucially involved in osteoimmunology. The present review explores the biological mechanisms underlying the relationship between inflammatory dysregulation, structural progression, and osteoporosis in this diverse family of conditions. We summarize the current knowledge of bone biology and balance and the foundations of bone regulation, including bone morphogenetic protein, the Wnt pathway, and Hedgehog signaling, as well as the role of cytokines in the development of bone damage in SpA. Other areas surveyed include the pathobiology of bone damage and systemic bone loss (osteoporosis) in SpA and the effects of pharmacological treatment on focal bone damage. Lastly, we present data relative to a survey of bone metabolic assessment in SpA from Italian bone specialist rheumatology centers. The results confirm that most of the attention to bone health is given to postmenopausal subjects and that the aspect of metabolic bone health may still be underrepresented. In our opinion, it may be the time for a call to action to increase the interest in and focus on the diagnosis and management of SpA.
Collapse
Affiliation(s)
- Angelo Fassio
- Dipartimento di Medicina, Università di Verona, 37124 Verona, Italy; (M.R.); (D.G.)
| | - Fabiola Atzeni
- Unità Operativa Complessa di Reumatologia Azienda Ospedaliero Universitaria Policlinico “G. Martino” di Messina, 35128 Messina, Italy; (F.A.); (V.D.)
| | - Maurizio Rossini
- Dipartimento di Medicina, Università di Verona, 37124 Verona, Italy; (M.R.); (D.G.)
| | - Valeria D’Amico
- Unità Operativa Complessa di Reumatologia Azienda Ospedaliero Universitaria Policlinico “G. Martino” di Messina, 35128 Messina, Italy; (F.A.); (V.D.)
| | - Francesco Cantatore
- Unità Operativa Complessa di Reumatologia Universitaria, Polic. “Riuniti” di Foggia, 71122 Foggia, Italy;
| | - Maria Sole Chimenti
- Dipartimento di Medicina dei Sistemi, Reumatologia, Allergologia e Immunologia Clinica Università di Roma Tor Vergata, 00133 Rome, Italy;
| | - Chiara Crotti
- UOC Osteoporosi e Malattie Metaboliche dell’Osso Dipartimento di Reumatologia e Scienze Mediche ASST-G. Pini-CTO, 20122 Milan, Italy;
| | - Bruno Frediani
- Department of Medical, Surgical and Neuroscience Sciences, Rheumatology University of Siena, 53100 Siena, Italy;
| | - Andrea Giusti
- SSD Malattie Reumatologiche e del Metabolismo Osseo, Dipartimento delle Specialità Mediche, ASL3, 16132 Genova, Italy;
| | - Giusy Peluso
- UOC di Reumatologia-Fondazione Policlinico Universitario Agostino Gemelli-IRCSS, 00168 Rome, Italy;
| | - Guido Rovera
- Ospedale S. Andrea, Divisione Reumatologia, 13100 Vercelli, Italy;
| | - Palma Scolieri
- Ambulatorio di Reumatologia Ospedale Nuovo Regina Margherita ASL ROMA1, 00153 Rome, Italy;
| | | | - Davide Gatti
- Dipartimento di Medicina, Università di Verona, 37124 Verona, Italy; (M.R.); (D.G.)
| | | |
Collapse
|
10
|
Fang X, Chen C, Wang ZX, Zhao Y, Jiang LQ, Fang Y, Zhang RD, Pan HF, Tao SS. Serum DKK-1 level in ankylosing spondylitis: insights from meta-analysis and Mendelian randomization. Front Immunol 2023; 14:1193357. [PMID: 37503346 PMCID: PMC10368999 DOI: 10.3389/fimmu.2023.1193357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Objective The purpose of this study was to precisely evaluate the serum Dickkopf-1 (DKK-1) level in patients with ankylosing spondylitis (AS) relative to that in normal controls and to test the causal relationship between DKK-1 and the risk of AS. Methods Embase, PubMed, Web of Science, WANFANG DATA, VIP, and China National Knowledge Infrastructure (CNKI) were comprehensively searched until July 2022 for pertinent studies. The pooled standardized mean difference (SMD) with a 95% confidence interval (CI) was calculated by the fixed or random-effect model. In Mendelian randomization (MR) analysis on the causal relationship between serum DKK-1 level and AS risk, the inverse variance weighting method (IVW), MR-Egger regression, weighted median method, and weighted pattern method were applied. Sensitivity analyses, including the horizontal pleiotropy test, heterogeneity test, and leave-one-out test, were also performed. Results The meta-analysis of 40 studies containing 2,371 AS patients and 1,633 healthy controls showed that there was no significant difference in DKK-1 serum level between AS patients and normal controls (pooled SMD=0.207, 95% CI =-0.418-0.832, P=0.516). The subgroup analysis of the CRP ≤ 10 mg/L group showed that AS patients had higher serum DKK-1 concentration than the healthy controls (SMD=2.267, 95% CI = 0.102-4.432, P=0.040). Similarly, MR analysis also demonstrated no significant association between DKK-1 serum level and AS (IVW OR=0.999, 95% CI = 0.989-1.008, P=0.800). All sensitivity analyses revealed consistent results. Conclusions There was no significant change in serum DKK-1 concentration between AS patients and healthy controls. In addition, no causal relationship exists between serum DKK-1 levels and AS risk.
Collapse
Affiliation(s)
- Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhi-Xin Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ruo-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Zou Y, Wang Z, Shao L, Xia Z, Lan Y, Yu Z, Yao J, Luo Z. DNA methylation of DKK-1 may correlate with pathological bone formation in ankylosing spondylitis. Immun Inflamm Dis 2023; 11:e911. [PMID: 37506134 PMCID: PMC10326833 DOI: 10.1002/iid3.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE To investigate DNA methylation (DNAm) status of dickkopf-associated protein 1 (DKK-1) in ossified hip capsule synovium and serum among patients with ankylosing spondylitis (AS). METHODS Western blot was applied to detect the level of DKK-1 protein expression in hip joint capsule tissues from four patients with AS as well as four patients with femoral neck fracture (FNF) caused by trauma as control. DKK-1 gene promoter methylation (GPM) was examined by methylation-specific polymerase chain reaction. Reverse transcription-polymerase chain reaction was performed to examine the messenger RNA (mRNA) levels of DKK-1, β-catenin, and Wnt3a in both tissue and serum. The DNAm status of serum DKK-1 was measured among 36 patients with AS and syndesmophytes (AS + syndesmophytes group), 40 patients with AS but no syndesmophyte (AS group), and 42 healthy individuals (control group). Also, the serum levels of DKK-1 were measured by enzyme-linked immunosorbent assay. The modified New York criteria (mNYC) together with the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS) were adopted to examine the radiographic progression of AS. The receiver operating characteristic (ROC) curve was applied to investigate the diagnostic value of the methylation rate of DKK-1 with regard to radiographic progression. RESULTS The expressions of DKK-1 protein and mRNA in hip joint capsule tissues of AS patients were significantly lower, while DKK-1 GPM rate, β-catenin mRNA, and Wnt3a mRNA were markedly higher when compared with FNF group. For serum samples, the DKK-1 methylation rate was significantly higher in AS+ syndesmophytes group in contrast to AS group and healthy controls. Serum levels of DKK-1 protein and mRNA in AS with syndesmophytes group were markedly decreased, while β-catenin mRNA and Wnt3a mRNA expressions were significantly increased than AS with no syndesmophyte group and the healthy control group. AS patients in Grade 4 showed a significantly higher serum DKK-1 GPM rate than those in Grade 3 based on mNYC. Serum DKK-1 GPM level was markedly and positively correlated with mSASSS. Serum levels of DKK-1 in AS+ syndesmophytes group were markedly lower compared with AS but no syndesmophyte group and healthy controls. ROC curve analysis indicated that serum DKK-1 methylation rate serves as a decent indicator for AS radiographic progression. CONCLUSION DNAm of DKK-1 may correlate with pathological bone formation in AS, which may provide new strategies for the treatment of AS abnormal bone formation.
Collapse
Affiliation(s)
- Yu‐Cong Zou
- Department of RehabilitationThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
- Deaprtment of RehabilitationThe 5th Affiliated Hospital of Foshan UniversityFoshanGuangdong ProvinceChina
| | - Zhi‐Jun Wang
- Department of RehabilitationThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Li‐Cheng Shao
- Department of Internal MedicineThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Zhi‐Hong Xia
- Department of Internal MedicineThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Yi‐Feng Lan
- Department of RadiologyThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Zhi‐Hui Yu
- Department of Laboratory medicineThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Jia‐Yu Yao
- Department of Internal MedicineThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Zi‐Rui Luo
- Department of RehabilitationThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| |
Collapse
|
12
|
Tavasolian F, Inman RD. Biology and therapeutic potential of mesenchymal stem cell extracellular vesicles in axial spondyloarthritis. Commun Biol 2023; 6:413. [PMID: 37059822 PMCID: PMC10104809 DOI: 10.1038/s42003-023-04743-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/21/2023] [Indexed: 04/16/2023] Open
Abstract
Axial spondyloarthritis (AxSpA) is a chronic, inflammatory, autoimmune disease that predominantly affects the joints of the spine, causes chronic pain, and, in advanced stages, may result in spinal fusion. Recent developments in understanding the immunomodulatory and tissue-differentiating properties of mesenchymal stem cell (MSC) therapy have raised the possibility of applying such treatment to AxSpA. The therapeutic effectiveness of MSCs has been shown in numerous studies spanning a range of diseases. Several studies have been conducted examining acellular therapy based on MSC secretome. Extracellular vesicles (EVs) generated by MSCs have been proven to reproduce the impact of MSCs on target cells. These EVs are associated with immunological regulation, tissue remodeling, and cellular homeostasis. EVs' biological effects rely on their cargo, with microRNAs (miRNAs) integrated into EVs playing a particularly important role in gene expression regulation. In this article, we will discuss the impact of MSCs and EVs generated by MSCs on target cells and how these may be used as unique treatment strategies for AxSpA.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert D Inman
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Del Vescovo S, Venerito V, Iannone C, Lopalco G. Uncovering the Underworld of Axial Spondyloarthritis. Int J Mol Sci 2023; 24:6463. [PMID: 37047435 PMCID: PMC10095023 DOI: 10.3390/ijms24076463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Axial spondyloarthritis (axial-SpA) is a multifactorial disease characterized by inflammation in sacroiliac joints and spine, bone reabsorption, and aberrant bone deposition, which may lead to ankylosis. Disease pathogenesis depends on genetic, immunological, mechanical, and bioenvironmental factors. HLA-B27 represents the most important genetic factor, although the disease may also develop in its absence. This MHC class I molecule has been deeply studied from a molecular point of view. Different theories, including the arthritogenic peptide, the unfolded protein response, and HLA-B27 homodimers formation, have been proposed to explain its role. From an immunological point of view, a complex interplay between the innate and adaptive immune system is involved in disease onset. Unlike other systemic autoimmune diseases, the innate immune system in axial-SpA has a crucial role marked by abnormal activity of innate immune cells, including γδ T cells, type 3 innate lymphoid cells, neutrophils, and mucosal-associated invariant T cells, at tissue-specific sites prone to the disease. On the other hand, a T cell adaptive response would seem involved in axial-SpA pathogenesis as emphasized by several studies focusing on TCR low clonal heterogeneity and clonal expansions as well as an interindividual sharing of CD4/8 T cell receptors. As a result of this immune dysregulation, several proinflammatory molecules are produced following the activation of tangled intracellular pathways involved in pathomechanisms of axial-SpA. This review aims to expand the current understanding of axial-SpA pathogenesis, pointing out novel molecular mechanisms leading to disease development and to further investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Claudia Iannone
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| |
Collapse
|
14
|
Özdemirel AE, Güven SC, Doğancı A, Sarı Sürmeli Z, Özyuvalı A, Kurt M, Rüstemova D, Hassan S, Yalçın Sayın AP, Tutkak H, Ataman Ş. Anti-tumor necrosis factor alpha treatment does not influence serum levels of the markers associated with radiographic progression in ankylosing spondylitis. Arch Rheumatol 2023; 38:148-155. [PMID: 37235120 PMCID: PMC10208618 DOI: 10.46497/archrheumatol.2023.9974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES The study aimed to determine the levels of change of the markers related to radiographic progression, such as Dickkopf-1 (DKK-1), sclerostin (SOST), bone morphogenetic protein (BMP)-2 and -4, and interleukin (IL)-17 and -23, in ankylosing spondyloarthritis (AS) during anti-tumor necrosis factor alpha (TNF-α) treatment. PATIENTS AND METHODS Fifty-three anti-TNF-α naïve AS patients (34 males, 19 females; median: 38 years; range, 20 to 52 years) refractory to conventional treatments meeting the modified New York criteria or Assessment of SpondyloArthritis International Society classification criteria were enrolled to this cross-sectional, controlled study between October 2015 and January 2017. Fifty healthy volunteers (35 males, 15 females; median: 36 years; range, 18 to 55 years) with similar age and sex characteristics were recruited. Serum DKK-1, BMP-2, BMP-4, SOST, IL-17, and IL-23 levels were measured in both groups. The serum levels of the markers were measured again after about two years (mean follow-up duration of 21.7±6.4 months) in AS patients who started anti-TNF-α treatment. Demographic, clinical characteristics, and laboratory parameters were recorded. The disease activity at the time of inclusion was assessed through the Bath Ankylosing Spondylitis Disease Activity Index. RESULTS Serum DKK-1, SOST, IL-17, and IL-23 levels in the AS group before anti-TNF-a treatment were significantly higher compared to the control group (p<0.01 for DKK-1, p<0.001 for others). There was no difference regarding serum BMP-4 levels, whereas BMP-2 levels were significantly higher in the control group (p<0.01). Forty (75.47%) AS patients had serum marker levels measured after anti-TNF-α treatment. No significant change was observed in the serum levels of these 40 patients measured 21.7±6.4 months after the initiation of anti-TNF-α treatment (p>0.05 for all). CONCLUSION In AS patients, there was no change in DKK-1/SOST, BMP, and IL-17/23 cascade with anti-TNF-α treatment. This finding may suggest that these pathways act independently of each other, and their local effects are not influenced by systemic inflammation.
Collapse
Affiliation(s)
| | - Serdar Can Güven
- Department of Rheumatology, Ankara City Hospital, Ankara, Türkiye
| | - Alper Doğancı
- Department of Physical and Rehabilitation Medicine, Erzurum Regional Training and Research Hospital, Erzurum, Türkiye
| | | | - Ayla Özyuvalı
- Department of Physical and Rehabilitation Medicine, HFM Beyazpınar Physical Medicine And Rehabilitation Centre, Ankara, Türkiye
| | - Mehmet Kurt
- Department of Physical and Rehabilitation Medicine, Dr. Ergun Özdemir Görele State Hospital, Giresun, Türkiye
| | - Diana Rüstemova
- Department of Physical and Rehabilitation Medicine, Can Private Hospital, Manisa, Türkiye
| | - Selin Hassan
- Department of Physical and Rehabilitation Medicine, Başkent University Medical School, Ankara, Türkiye
| | | | - Hüseyin Tutkak
- Department of Immunology and Allergy, Ankara University Medical School, Ankara, Türkiye
| | - Şebnem Ataman
- Department of Rheumatology, Ankara University Medical School, Ankara, Türkiye
| |
Collapse
|