1
|
Politano L. Is Cardiac Transplantation Still a Contraindication in Patients with Muscular Dystrophy-Related End-Stage Dilated Cardiomyopathy? A Systematic Review. Int J Mol Sci 2024; 25:5289. [PMID: 38791328 PMCID: PMC11121328 DOI: 10.3390/ijms25105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited muscular diseases (MDs) are genetic degenerative disorders typically caused by mutations in a single gene that affect striated muscle and result in progressive weakness and wasting in affected individuals. Cardiac muscle can also be involved with some variability that depends on the genetic basis of the MD (Muscular Dystrophy) phenotype. Heart involvement can manifest with two main clinical pictures: left ventricular systolic dysfunction with evolution towards dilated cardiomyopathy and refractory heart failure, or the presence of conduction system defects and serious life-threatening ventricular arrhythmias. The two pictures can coexist. In these cases, heart transplantation (HTx) is considered the most appropriate option in patients who are not responders to the optimized standard therapeutic protocols. However, cardiac transplant is still considered a relative contraindication in patients with inherited muscle disorders and end-stage cardiomyopathies. High operative risk related to muscle impairment and potential graft involvement secondary to the underlying myopathy have been the two main reasons implicated in the generalized reluctance to consider cardiac transplant as a viable option. We report an overview of cardiac involvement in MDs and its possible association with the underlying molecular defect, as well as a systematic review of HTx outcomes in patients with MD-related end-stage dilated cardiomyopathy, published so far in the literature.
Collapse
Affiliation(s)
- Luisa Politano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
2
|
Conte F, Sam JE, Lefeber DJ, Passier R. Metabolic Cardiomyopathies and Cardiac Defects in Inherited Disorders of Carbohydrate Metabolism: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108632. [PMID: 37239976 DOI: 10.3390/ijms24108632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure (HF) is a progressive chronic disease that remains a primary cause of death worldwide, affecting over 64 million patients. HF can be caused by cardiomyopathies and congenital cardiac defects with monogenic etiology. The number of genes and monogenic disorders linked to development of cardiac defects is constantly growing and includes inherited metabolic disorders (IMDs). Several IMDs affecting various metabolic pathways have been reported presenting cardiomyopathies and cardiac defects. Considering the pivotal role of sugar metabolism in cardiac tissue, including energy production, nucleic acid synthesis and glycosylation, it is not surprising that an increasing number of IMDs linked to carbohydrate metabolism are described with cardiac manifestations. In this systematic review, we offer a comprehensive overview of IMDs linked to carbohydrate metabolism presenting that present with cardiomyopathies, arrhythmogenic disorders and/or structural cardiac defects. We identified 58 IMDs presenting with cardiac complications: 3 defects of sugar/sugar-linked transporters (GLUT3, GLUT10, THTR1); 2 disorders of the pentose phosphate pathway (G6PDH, TALDO); 9 diseases of glycogen metabolism (GAA, GBE1, GDE, GYG1, GYS1, LAMP2, RBCK1, PRKAG2, G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO, PIGT, PIGV, PMM2, POMT1, POMT2, SRD5A3, XYLT2); 15 carbohydrate-linked lysosomal storage diseases (CTSA, GBA1, GLA, GLB1, HEXB, IDUA, IDS, SGSH, NAGLU, HGSNAT, GNS, GALNS, ARSB, GUSB, ARSK). With this systematic review we aim to raise awareness about the cardiac presentations in carbohydrate-linked IMDs and draw attention to carbohydrate-linked pathogenic mechanisms that may underlie cardiac complications.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
| | - Juda-El Sam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
3
|
Gu JN, Yang CX, Ding YY, Qiao Q, Di RM, Sun YM, Wang J, Yang L, Xu YJ, Yang YQ. Identification of BMP10 as a Novel Gene Contributing to Dilated Cardiomyopathy. Diagnostics (Basel) 2023; 13:diagnostics13020242. [PMID: 36673052 PMCID: PMC9857772 DOI: 10.3390/diagnostics13020242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Dilated cardiomyopathy (DCM), characterized by left ventricular or biventricular enlargement with systolic dysfunction, is the most common type of cardiac muscle disease. It is a major cause of congestive heart failure and the most frequent indication for heart transplantation. Aggregating evidence has convincingly demonstrated that DCM has an underlying genetic basis, though the genetic defects responsible for DCM in a larger proportion of cases remain elusive, motivating the ongoing research for new DCM-causative genes. In the current investigation, a multigenerational family affected with autosomal-dominant DCM was recruited from the Chinese Han population. By whole-exome sequencing and Sanger sequencing analyses of the DNAs from the family members, a new BMP10 variation, NM_014482.3:c.166C > T;p.(Gln56*), was discovered and verified to be in co-segregation with the DCM phenotype in the entire family. The heterozygous BMP10 variant was not detected in 268 healthy volunteers enrolled as control subjects. The functional measurement via dual-luciferase reporter assay revealed that Gln56*-mutant BMP10 lost the ability to transactivate its target genes NKX2.5 and TBX20, two genes that had been causally linked to DCM. The findings strongly indicate BMP10 as a new gene contributing to DCM in humans and support BMP10 haploinsufficiency as an alternative pathogenic mechanism underpinning DCM, implying potential implications for the early genetic diagnosis and precision prophylaxis of DCM.
Collapse
Affiliation(s)
- Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Yuan-Yuan Ding
- Shanghai Health Development Research Center, Shanghai Medical Information Center, Shanghai 200031, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Ruo-Min Di
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Jun Wang
- Department of Cardiology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Ling Yang
- Department of Ultrasound, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| |
Collapse
|
4
|
Seidel F, Laser KT, Klingel K, Dartsch J, Theisen S, Pickardt T, Holtgrewe M, Gärtner A, Berger F, Beule D, Milting H, Schubert S, Klaassen S, Kühnisch J. Pathogenic Variants in Cardiomyopathy Disorder Genes Underlie Pediatric Myocarditis—Further Impact of Heterozygous Immune Disorder Gene Variants? J Cardiovasc Dev Dis 2022; 9:jcdd9070216. [PMID: 35877578 PMCID: PMC9321514 DOI: 10.3390/jcdd9070216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Myocarditis is an inflammatory disease of the heart. Pediatric myocarditis with the dilated cardiomyopathy (DCM) phenotype may be caused by likely pathogenic or pathogenic genetic variants [(L)P] in cardiomyopathy (CMP) genes. Systematic analysis of immune disorder gene defects has not been performed so far. We analyzed 12 patients with biopsy-proven myocarditis and the DCM phenotype together with their parents using whole-exome sequencing (WES). The WES data were filtered for rare pathogenic variants in CMP (n = 89) and immune disorder genes (n = 631). Twelve children with a median age of 2.9 (1.0–6.8) years had a mean left ventricular ejection fraction of 28% (22–32%) and myocarditis was confirmed by endomyocardial biopsy. Patients with primary immunodeficiency were excluded from the study. Four patients underwent implantation of a ventricular assist device and subsequent heart transplantation. Genetic analysis of the 12 families revealed an (L)P variant in the CMP gene in 8/12 index patients explaining DCM. Screening of recessive immune disorder genes identified a heterozygous (L)P variant in 3/12 index patients. This study supports the genetic impact of CMP genes for pediatric myocarditis with the DCM phenotype. Piloting the idea that additional immune-related genetic defects promote myocarditis suggests that the presence of heterozygous variants in these genes needs further investigation. Altered cilium function might play an additional role in inducing inflammation in the context of CMP.
Collapse
Affiliation(s)
- Franziska Seidel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Berlin, 13353 Berlin, Germany;
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Pediatric Cardiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Kai Thorsten Laser
- Center for Congenital Heart Disease/Pediatric Cardiology, Heart-and Diabetescenter NRW, University Clinic of Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (K.T.L.); (S.S.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72016 Tübingen, Germany;
| | - Josephine Dartsch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Simon Theisen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Thomas Pickardt
- National Register for Congenital Heart Defects, 13353 Berlin, Germany;
| | - Manuel Holtgrewe
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), 10117 Berlin, Germany;
- Core Facility Bioinformatik, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart-and Diabetescenter NRW, University Hospital of the Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (A.G.); (H.M.)
| | - Felix Berger
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Berlin, 13353 Berlin, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Pediatric Cardiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dieter Beule
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), 10117 Berlin, Germany;
| | - Hendrik Milting
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart-and Diabetescenter NRW, University Hospital of the Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (A.G.); (H.M.)
| | - Stephan Schubert
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Berlin, 13353 Berlin, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Center for Congenital Heart Disease/Pediatric Cardiology, Heart-and Diabetescenter NRW, University Clinic of Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (K.T.L.); (S.S.)
| | - Sabine Klaassen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Pediatric Cardiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Correspondence: (S.K.); (J.K.); Tel.: +49-30-9406-3319 (S.K. & J.K.); Fax: +49-30-9406-3358 (S.K. & J.K.)
| | - Jirko Kühnisch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: (S.K.); (J.K.); Tel.: +49-30-9406-3319 (S.K. & J.K.); Fax: +49-30-9406-3358 (S.K. & J.K.)
| |
Collapse
|