1
|
Moxon SR, McMurran Z, Kibble MJ, Domingos M, Gough JE, Richardson SM. 3D bioprinting of an intervertebral disc tissue analogue with a highly aligned annulus fibrosus via suspended layer additive manufacture. Biofabrication 2024; 17:015005. [PMID: 39366424 PMCID: PMC11499629 DOI: 10.1088/1758-5090/ad8379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Intervertebral disc (IVD) function is achieved through integration of its two component regions: the nucleus pulposus (NP) and the annulus fibrosus (AF). The NP is soft (0.3-5 kPa), gelatinous and populated by spherical NP cells in a polysaccharide-rich extracellular matrix (ECM). The AF is much stiffer (∼100 kPa) and contains layers of elongated AF cells in an aligned, fibrous ECM. Degeneration of the disc is a common problem with age being a major risk factor. Progression of IVD degeneration leads to chronic pain and can result in permanent disability. The development of therapeutic solutions for IVD degeneration is impaired by a lack ofin vitromodels of the disc that are capable of replicating the fundamental structure and biology of the tissue. This study aims to investigate if a newly developed suspended hydrogel bioprinting system (termed SLAM) could be employed to fabricate IVD analogues with integrated structural and compositional features similar to native tissue. Bioprinted IVD analogues were fabricated to recapitulate structural, morphological and biological components present in the native tissue. The constructs replicated key structural components of native tissue with the presence of a central, polysaccharide-rich NP surrounded by organised, aligned collagen fibres in the AF. Cell tracking, actin and matrix staining demonstrated that embedded NP and AF cells exhibited morphologies and phenotypes analogous to what is observedin vivowith elongated, aligned AF cells and spherical NP cells that deposited HA into the surrounding environment. Critically, it was also observed that the NP and AF regions contained a defined cellular and material interface and segregated regions of the two cell types, thus mimicking the highly regulated structure of the IVD.
Collapse
Affiliation(s)
- S R Moxon
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
| | - Z McMurran
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - M J Kibble
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
| | - M Domingos
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - J E Gough
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - S M Richardson
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Liu KM, Yang CF, H’ng WS, Chuang HP, Khor EHX, Tsai PC, Khosasih V, Lu LS, Yeh EC, Lin WJ, Hsieh FJ, Chen CH, Hwang SL, Wu JY. Role of IL3RA in a Family with Lumbar Spinal Stenosis. Int J Mol Sci 2024; 25:10915. [PMID: 39456698 PMCID: PMC11507247 DOI: 10.3390/ijms252010915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Lumbar spinal stenosis (LSS) is a degenerative spinal condition characterized by the narrowing of the spinal canal, resulting in low back pain (LBP) and limited leg mobility. Twin and family studies have suggested that genetics contributes to disease progression. However, the genetic causes of familial LSS remain unclear. We performed whole-exome and direct sequencing on seven female patients from a Han Chinese family with LBP, among whom four developed LSS. Based on our genetic findings, we performed gene knockdown studies in human chondrocytes to study possible pathological mechanisms underlying LSS. We found a novel nonsense mutation, c.417C > G (NM_002183, p.Y139X), in IL3RA, shared by all the LBP/LSS cases. Knockdown of IL3RA led to a reduction in the total collagen content of 81.6% in female chondrocytes and 21% in male chondrocytes. The expression of MMP-1, -3, and/or -10 significantly increased, with a more pronounced effect observed in females than in males. Furthermore, EsRb expression significantly decreased following IL3RA knockdown. Moreover, the knockdown of EsRb resulted in increased MMP-1 and -10 expression in chondrocytes from females. We speculate that IL3RA deficiency could lead to a reduction in collagen content and intervertebral disk (IVD) strength, particularly in females, thereby accelerating IVD degeneration and promoting LSS occurrence. Our results illustrate, for the first time, the association between IL3RA and estrogen receptor beta, highlighting their importance and impact on MMPs and collagen in degenerative spines in women.
Collapse
Affiliation(s)
- Kai-Ming Liu
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| | - Chi-Fan Yang
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| | - Weng-Siong H’ng
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| | - Hui-Ping Chuang
- Resource Center for Translational Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Eunice Han Xian Khor
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| | - Pei-Chun Tsai
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| | - Vivia Khosasih
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| | - Liang-Suei Lu
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| | - Erh-Chan Yeh
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| | - Wan-Jia Lin
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| | - Feng-Jen Hsieh
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| | - Chien-Hsiun Chen
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| | | | - Jer-Yuarn Wu
- National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (K.-M.L.); (C.-F.Y.); (W.-S.H.); (E.H.X.K.); (P.-C.T.); (V.K.); (L.-S.L.); (E.-C.Y.); (W.-J.L.); (F.-J.H.); (C.-H.C.)
| |
Collapse
|
3
|
Chen X, Jing S, Xue C, Guan X. Progress in the Application of Hydrogels in Intervertebral Disc Repair: A Comprehensive Review. Curr Pain Headache Rep 2024:10.1007/s11916-024-01296-6. [PMID: 38985414 DOI: 10.1007/s11916-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration (IVDD) is a common orthopaedic disease and an important cause of lower back pain, which seriously affects the work and life of patients and causes a large economic burden to society. The traditional treatment of IVDD mainly involves early pain relief and late surgical intervention, but it cannot reverse the pathological course of IVDD. Current studies suggest that IVDD is related to the imbalance between the anabolic and catabolic functions of the extracellular matrix (ECM). Anti-inflammatory drugs, bioactive substances, and stem cells have all been shown to improve ECM, but traditional injection methods face short half-life and leakage problems. RECENT FINDINGS The good biocompatibility and slow-release function of polymer hydrogels are being noticed and explored to combine with drugs or bioactive substances to treat IVDD. This paper introduces the pathophysiological mechanism of IVDD, and discusses the advantages, disadvantages and development prospects of hydrogels for the treatment of IVDD, so as to provide guidance for future breakthroughs in the treatment of IVDD.
Collapse
Affiliation(s)
- Xin Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaoze Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Chenhui Xue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaoming Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
4
|
Penolazzi L, Chierici A, Notarangelo MP, Dallan B, Lisignoli G, Lambertini E, Greco P, Piva R, Nastruzzi C. Wharton's jelly-derived multifunctional hydrogels: New tools to promote intervertebral disc regeneration in vitro and ex vivo. J Biomed Mater Res A 2024; 112:973-987. [PMID: 38308554 DOI: 10.1002/jbm.a.37683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The degeneration of intervertebral disc (IVD) is a disease of the entire joint between two vertebrae in the spine caused by loss of extracellular matrix (ECM) integrity, to date with no cure. The various regenerative approaches proposed so far have led to very limited successes. An emerging opportunity arises from the use of decellularized ECM as a scaffolding material that, directly or in combination with other materials, has greatly facilitated the advancement of tissue engineering. Here we focused on the decellularized matrix obtained from human umbilical cord Wharton's jelly (DWJ) which retains several structural and bioactive molecules very similar to those of the IVD ECM. However, being a viscous gel, DWJ has limited ability to retain ordered structural features when considered as architecture scaffold. To overcome this limitation, we produced DWJ-based multifunctional hydrogels, in the form of 3D millicylinders containing different percentages of alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, which may impart mechanical integrity to the biologically active DWJ. The developed protocol, based on a freezing step, leads to the consolidation of the entire polymeric dispersion mixture, followed by an ionic gelation step and a freeze-drying process. Finally, a porous, stable, easily storable, and suitable matrix for ex vivo experiments was obtained. The properties of the millicylinders (Wharton's jelly millicylinders [WJMs]) were then tested in culture of degenerated IVD cells isolated from disc tissues of patients undergoing surgical discectomy. We found that WJMs with the highest percentage of DWJ were effective in supporting cell migration, restoration of the IVD phenotype (increased expression of Collagen type 2, aggrecan, Sox9 and FOXO3a), anti-inflammatory action, and stem cell activity of resident progenitor/notochordal cells (increased number of CD24 positive cells). We are confident that the DWJ-based formulations proposed here can provide adequate stimuli to the cells present in the degenerated IVD to restart the anabolic machinery.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Anna Chierici
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Beatrice Dallan
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Gina Lisignoli
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Lambertini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Pantaleo Greco
- Obstetrics and Gynecology Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Claudio Nastruzzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Zhou H, He J, Liu R, Cheng J, Yuan Y, Mao W, Zhou J, He H, Liu Q, Tan W, Shuai C, Deng Y. Microenvironment-responsive metal-phenolic network release platform with ROS scavenging, anti-pyroptosis, and ECM regeneration for intervertebral disc degeneration. Bioact Mater 2024; 37:51-71. [PMID: 38515609 PMCID: PMC10954684 DOI: 10.1016/j.bioactmat.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) can be caused by aging, injury, and genetic factors. The pathological changes associated with IVDD include the excessive accumulation of reactive oxygen species (ROS), cellular pyroptosis, and extracellular matrix (ECM) degradation. There are currently no approved specific molecular therapies for IVDD. In this study, we developed a multifunctional and microenvironment-responsive metal-phenolic network release platform, termed TMP@Alg-PBA/PVA, which could treat (IL-1β)-induced IVDD. The metal-phenolic network (TA-Mn-PVP, TMP) released from this platform targeted mitochondria to efficiently scavenge ROS and reduce ECM degradation. Pyroptosis was suppressed through the inhibition of the IL-17/ERK signaling pathway. These findings demonstrate the versatility of the platform. And in a rat model of IVDD, TMP@Alg-PBA/PVA exhibited excellent therapeutic effects by reducing the progression of the disease. TMP@Alg-PBA/PVA, therefore, presents clinical potential for the treatment of IVDD.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Jinpeng He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Renfeng Liu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yuhao Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wanpu Mao
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Jun Zhou
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Honghui He
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Qianqi Liu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
6
|
Xu T, Zhao H, Li J, Fang X, Wu H, Hu W. Apigetrin alleviates intervertebral disk degeneration by regulating nucleus pulposus cell autophagy. JOR Spine 2024; 7:e1325. [PMID: 38633661 PMCID: PMC11022626 DOI: 10.1002/jsp2.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 02/25/2024] [Indexed: 04/19/2024] Open
Abstract
Background Intervertebral disk degeneration (IVDD) is a common spine disease, and inflammation is considered to be one of its main pathogenesis. Apigetrin (API) is a natural bioactive flavonoid isolated from various herbal medicines and shows attractive anti-inflammatory and antioxidative properties; whereas, there is no exploration of the therapeutic potential of API on IVDD. Here, we aim to explore the potential role of API on IVDD in vivo and in vitro. Methods In vitro, western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence analysis were implemented to explore the bioactivity of API on interleukin-1 beta (IL-1β)-induced inflammatory changes in nucleus pulposus cells (NPCs). In vivo, histological staining and immunohistochemistry were employed to investigate the histological changes of intervertebral disk sections on puncture-induced IVDD rat models. Results In vitro, API played a crucial role in anti-inflammation and autophagy enhancement in IL-1β-induced NPCs. API improved inflammation by inhibiting the nuclear factor-kappaB and mitogen-activated protein kinas pathways, whereas it promoted autophagy via the phosphatidylinositol 3-kinase/AKT/mammalian target of the rapamycin pathway. Furthermore, in vivo experiment illustrated that API mitigates the IVDD progression in puncture-induced IVDD model. Conclusions API inhibited degenerative phenotypes and promoted autophagy in vivo and in vitro IVDD models. Those suggested that API might be a potential drug or target for IVDD.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jian Li
- Department of OrthopaedicsThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuanChina
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
7
|
Liu Y, Li L, Li X, Cherif H, Jiang S, Ghezelbash F, Weber MH, Juncker D, Li-Jessen NYK, Haglund L, Li J. Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration. Acta Biomater 2024; 180:244-261. [PMID: 38615812 DOI: 10.1016/j.actbio.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Li Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Hosni Cherif
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Shuaibing Jiang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Michael H Weber
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; McGill University & Genome Quebec Innovation Centre, 740 Avenue Dr. Penfield, Montréal, QC H4A 0G1, Canada
| | - Nicole Y K Li-Jessen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; School of Communication Sciences and Disorders, McGill University, 2001 McGill College Avenue, Montréal, QC H3A 1G1, Canada; Department of Otolaryngology - Head and Neck Surgery, McGill University Health Centre, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada; Research Institute of McGill University Health Center, McGill University, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada; Shriners Hospital for Children, 1003 Bd Décarie, Montréal, QC H4A 0A9, Canada.
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada; Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada.
| |
Collapse
|
8
|
Li L, Zhang G, Yang Z, Kang X. Stress-Activated Protein Kinases in Intervertebral Disc Degeneration: Unraveling the Impact of JNK and p38 MAPK. Biomolecules 2024; 14:393. [PMID: 38672411 PMCID: PMC11047866 DOI: 10.3390/biom14040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain. The pathophysiological development of IDD is closely related to the stimulation of various stressors, including proinflammatory cytokines, abnormal mechanical stress, oxidative stress, metabolic abnormalities, and DNA damage, among others. These factors prevent normal intervertebral disc (IVD) development, reduce the number of IVD cells, and induce senescence and apoptosis. Stress-activated protein kinases (SAPKs), particularly, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), control cell signaling in response to cellular stress. Previous studies have shown that these proteins are highly expressed in degenerated IVD tissues and are involved in complex biological signal-regulated processes. Therefore, we summarize the research reports on IDD related to JNK and p38 MAPK. Their structure, function, and signal regulation mechanisms are comprehensively and systematically described and potential therapeutic targets are proposed. This work could provide a reference for future research and help improve molecular therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Zhili Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| |
Collapse
|
9
|
Chen X, Cai D, Li H, Wei Q, Li X, Han Z, Liang J, Xie J, Ruan J, Liu J, Xiang Z, Dong W, Guo W. Exosomal U2AF2 derived from human bone marrow mesenchymal stem cells attenuates the intervertebral disc degeneration through circ_0036763/miR-583/ACAN axis. Regen Ther 2024; 25:344-354. [PMID: 38362337 PMCID: PMC10867602 DOI: 10.1016/j.reth.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is one of the major leading causes of back pain affecting the patient's quality of life. However, the roles of circular RNA (circRNA) in IDD remains unclear. This study aimed to explore the function and underlying mechanism of circ_0036763 in IDD. In this study, expressions of circ_0036763, U2 small nuclear RNA auxiliary factor 2 (U2AF2), miR-583 and aggrecan (ACAN) in primary human nucleus pulposus cells (HNPCs) derived from IDD patients and healthy controls were detected by quantitative real-time reverse transcription-PCR (qRT-PCR) or Western blot (WB). The relationship between pre-circ_0036763 and U2AF2, circ_0036763 and miR-583, miR-583 and ACAN mRNA was determined by bioinformatic analysis, miRNA pull down or RNA immunoprecipitation (RIP) assay. The expressions of Collagen I and Collagen II were evaluated by WB. Co-culture of bone marrow mesenchymal stem cells (bMSCs) or bMSCs-derived exosomes and HNPCs were performed to identify the effect of U2AF2 on the mature of circ_0036763 and ACAN. Results indicated that circ_0036763, U2AF2 and ACAN were downregulated while miR-583 was upregulated in HNPCs derived from IDD patients compared with that in normal HNPCs. Besides, overexpression of circ_0036763 elevated the expressions of ACAN and Collagen II whereas reduced Collagen I expression in HNPCs. Moreover, U2AF2 promoted the mature of circ_0036763, and circ_0036763 positively regulated ACAN by directly sponging miR-583. Furthermore, exosomal U2AF2 derived from bMSCs could increase U2AF2 levels in HNPCs and subsequently regulate the expression of ACAN by circ_0036763/miR-583 axis. In summary, circ_0036763 modified by exosomal U2AF2 derived from bMSCs alleviated IDD through regulating miR-583/ACAN axis in HNPCs. Thus, this study might provide novel therapeutic targets for IDD.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Dongling Cai
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Qipeng Wei
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Zhuangxun Han
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Jinjun Liang
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Junxian Xie
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Jincheng Liu
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Zhen Xiang
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Wenxuan Dong
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Weijun Guo
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| |
Collapse
|
10
|
Xue P, Wang Y, Lv L, Wang D, Wang Y. Roles of Chemokines in Intervertebral Disk Degeneration. Curr Pain Headache Rep 2024; 28:95-108. [PMID: 37976014 DOI: 10.1007/s11916-023-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration is the primary etiology of low back pain and radicular pain. This review examines the roles of crucial chemokines in different stages of degenerative disc disease, along with interventions targeting chemokine function to mitigate disc degeneration. RECENT FINDINGS The release of chemokines from degenerated discs facilitates the infiltration and activation of immune cells, thereby intensifying the inflammatory cascade response. The migration of immune cells into the venous lumen is concomitant with the emergence of microvascular tissue and nerve fibers. Furthermore, the presence of neurogenic factors secreted by disc cells and immune cells stimulates the activation of pain-related cation channels in the dorsal root ganglion, potentially exacerbating discogenic and neurogenic pain and intensifying the degenerative cascade response mediated by chemokines. Gaining a deeper comprehension of the functions of chemokines and immune cells in these processes involving catabolism, angiogenesis, and injury detection could offer novel therapeutic avenues for managing symptomatic disc disease.
Collapse
Affiliation(s)
- Pengfei Xue
- Medical School of Southeast University, Nanjing, Jiangsu, 210009, China
- Central Laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, 211300, China
| | - Yi Wang
- Department of Orthopaedics, Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, Jiangxi, 332000, China
| | - Long Lv
- Central Laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, 211300, China
| | - Dongming Wang
- Central Laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, 211300, China.
| | - Yuntao Wang
- Medical School of Southeast University, Nanjing, Jiangsu, 210009, China.
- Department of Spine Center, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
11
|
Yang S, Zhang Y, Peng Q, Meng B, Wang J, Sun H, Chen L, Dai R, Zhang L. Regulating pyroptosis by mesenchymal stem cells and extracellular vesicles: A promising strategy to alleviate intervertebral disc degeneration. Biomed Pharmacother 2024; 170:116001. [PMID: 38128182 DOI: 10.1016/j.biopha.2023.116001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of low back pain (LBP), which can lead to disability and thus generate a heavy burden on society. IVDD is characterized by a decrease in nucleus pulposus cells (NPCs) and endogenous mesenchymal stem cells (MSCs), degradation of the extracellular matrix, macrophage infiltration, and blood vessel and nerve ingrowth. To date, the therapeutic approaches regarding IVDD mainly include conservative treatment and surgical intervention. However, both can only relieve symptoms rather than stop or revert the progression of IVDD, since the pathogenesis of IVDD is not yet clear. Pyroptosis, which is characterized by Caspase family dependence and conducted by the Gasdermin family, is a newly discovered mode of programmed cell death. Pyroptosis has been observed in NPCs, annulus fibrosus cells (AFCs), chondrocytes, MSCs, macrophages, vascular endothelial cells and neurons and may contribute to IVDD. MSCs are a kind of pluripotent stem cell that can be found in almost all tissues. MSCs have a strong ability to secrete extracellular vesicles (EVs), which contain exosomes, microvesicles and apoptotic bodies. EVs derived from MSCs play an important role in pyroptosis regulation and could be beneficial for alleviating IVDD. This review focuses on clarifying the regulation of pyroptosis to improve IVDD by MSCs and EVs derived from MSCs.
Collapse
Affiliation(s)
- Sheng Yang
- Department of Orthopedics, Graduate School of Dalian Medical University, Dalian 116044, China
| | - Yongbo Zhang
- Department of Orthopedics, Graduate School of Dalian Medical University, Dalian 116044, China
| | - Qing Peng
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Bo Meng
- Department of Orthopedics, Graduate School of Dalian Medical University, Dalian 116044, China
| | - Jiabo Wang
- Department of Orthopedics, Huai'an 82 Hospital, Huai'an 223003, China
| | - Hua Sun
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Liuyang Chen
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Rui Dai
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
12
|
Zhou Z, Qin W, Zhang P, He J, Cheng Z, Gong Y, Zhu G, Liang D, Ren H, Jiang X, Sun Y. Potential molecular targets and drugs for basement membranes-related intervertebral disk degeneration through bioinformatics analysis and molecular docking. BMC Musculoskelet Disord 2023; 24:772. [PMID: 37784117 PMCID: PMC10544312 DOI: 10.1186/s12891-023-06891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Through bioinformatics analysis to identify the hub genes of Intervertebral disc degeneration (IVDD) associated with basement membranes (BMs) and find out the potential molecular targets and drugs for BMs-related annulus fibrosus (AF) degeneration based on bioinformatic analysis and molecular approach. METHODS Intervertebral disc degeneration (IVDD) related targets were obtained from GeneCards, DisGenet and OMIM databases. BMs related genes were obtained from Basement membraneBASE database. The intersection targets were identified and subjected to protein-to-protein interaction (PPI) construction via STRING. Hub genes were identified and conducted Gene ontology (GO) and pathway enrichment analysis through MCODE and Clue GO in Cytospace respectively. DSigDB database was retrieved to predict therapeutic drugs and molecular docking was performed through PyMOL, AutoDock 1.5.6 to verify the binding energy between the drug and the different expressed hub genes. Finally, GSE70362 from GEO database was obtained to verify the different expression and correlation of each hub gene for AF degeneration. RESULTS We identified 41 intersection genes between 3 disease targets databases and Basement membraneBASE database. PPI network revealed 25 hub genes and they were mainly enriched in GO terms relating to glycosaminoglycan catabolic process, the TGF-β signaling pathway. 4 core targets were found to be significant via comparison of microarray samples and they showed strong correlation. The molecular docking results showed that the core targets have strong binding energy with predicting drugs including chitosamine and retinoic acid. CONCLUSIONS In this study, we identified hub genes, pathways, potential targets, and drugs for treatment in BMs-related AF degeneration and IVDD.
Collapse
Affiliation(s)
- Zelin Zhou
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Weicheng Qin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Peng Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Jiahui He
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Zhaojun Cheng
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yan Gong
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Guangye Zhu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yuping Sun
- Pingshan General Hospital, Southern Medical University, Shenzhen, Guangdong, P.R. China.
- Pingshan District People's Hospital of Shenzhen, Shenzhen, Guangdong, P.R. China.
- Rehabilitation Department, Pingshan District People's Hospital, Shenzhen, P.R. China.
| |
Collapse
|
13
|
Mavrogonatou E, Papadopoulou A, Pratsinis H, Kletsas D. Senescence-associated alterations in the extracellular matrix: deciphering their role in the regulation of cellular function. Am J Physiol Cell Physiol 2023; 325:C633-C647. [PMID: 37486063 DOI: 10.1152/ajpcell.00178.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) is a dynamic structural network that provides a physical scaffolding, as well as biochemical factors that maintain normal tissue homeostasis and thus its disruption is implicated in many pathological conditions. On the other hand, senescent cells express a particular secretory phenotype, affecting the composition and organization of the surrounding ECM and modulating their microenvironment. As accumulation of senescent cells may be linked to the manifestation of several age-related conditions, senescence-associated ECM alterations may serve as targets for novel anti-aging treatment modalities. Here, we will review characteristic changes in the ECM elicited by cellular senescence and we will discuss the complex interplay between ECM and senescent cells, in relation to normal aging and selected age-associated pathologies.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| |
Collapse
|
14
|
Tu Z, Han F, Zhu Z, Yu Q, Liu C, Bao Y, Li B, Zhou F. Sustained release of basic fibroblast growth factor in micro/nanofibrous scaffolds promotes annulus fibrosus regeneration. Acta Biomater 2023; 166:241-253. [PMID: 37230436 DOI: 10.1016/j.actbio.2023.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Tissue engineering has promising applications in the treatment of intervertebral disc degeneration (IDD). The annulus fibrosus (AF) is critical for maintaining the physiological function of the intervertebral disc (IVD), but the lack of vessels and nutrition in AF makes it difficult to repair. In this study, we used hyaluronan (HA) micro-sol electrospinning and collagen type I (Col-I) self-assembly techniques to fabricate layered biomimetic micro/nanofibrous scaffolds, which released basic fibroblast growth factor (bFGF) to promote AF repair and regeneration after discectomy and endoscopic transforaminal discectomy. The bFGF enveloped in the core of the poly-L-lactic-acid (PLLA) core-shell structure was released in a sustained manner and promoted the adhesion and proliferation of AF cells (AFCs). Col-I could self-assemble on the shell of the PLLA core-shell scaffold to mimic the extracellular matrix (ECM) microenvironment, providing structural and biochemical cues for the regeneration of AF tissue. The in vivo studies showed that the micro/nanofibrous scaffolds promoted the repair of AF defects by simulating the microstructure of native AF tissue and inducing endogenous regeneration mechanism. Taken together, the biomimetic micro/nanofibrous scaffolds have clinical potential for the treatment of AF defects caused by IDD. STATEMENT OF SIGNIFICANCE: The annulus fibrosus (AF) is essential for the intervertebral disc (IVD) physiological function, yet it lacks vascularity and nutrition, making repair difficult. Micro-sol electrospinning technology and collagen type I (Col-I) self-assembly technique were combined in this study to create a layered biomimetic micro/nanofibrous scaffold that releases basic fibroblast growth factor (bFGF) to promote AF repair and regeneration. Col-I could mimic the extracellular matrix (ECM) microenvironment, in vivo, offering structural and biochemical cues for AF tissue regeneration. This research indicates that micro/nanofibrous scaffolds have clinical potential for treating AF deficits induced by IDD.
Collapse
Affiliation(s)
- Zhengdong Tu
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhuang Zhu
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Changjiang Liu
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yu Bao
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Feng Zhou
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
15
|
Li X, Liu Y, Li L, Huo R, Ghezelbash F, Ma Z, Bao G, Liu S, Yang Z, Weber MH, Li-Jessen NYK, Haglund L, Li J. Tissue-mimetic hybrid bioadhesives for intervertebral disc repair. MATERIALS HORIZONS 2023; 10:1705-1718. [PMID: 36857679 DOI: 10.1039/d2mh01242a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Intervertebral disc (IVD) degeneration and herniation often necessitate surgical interventions including a discectomy with or without a nucleotomy, which results in a loss of the normal nucleus pulposus (NP) and a defect in the annulus fibrosus (AF). Due to the limited regenerative capacity of the IVD tissue, the annular tear may remain a persistent defect and result in recurrent herniation post-surgery. Bioadhesives are promising alternatives but show limited adhesion performance, low regenerative capacity, and inability to prevent re-herniation. Here, we report hybrid bioadhesives that combine an injectable glue and a tough sealant to simultaneously repair and regenerate IVD post-nucleotomy. The glue fills the NP cavity while the sealant seals the AF defect. Strong adhesion occurs with the IVD tissues and survives extreme disc loading. Furthermore, the glue can match native NP mechanically, and support the viability and matrix deposition of encapsulated cells, serving as a suitable cell delivery vehicle to promote NP regeneration. Besides, biomechanical tests with bovine IVD motion segments demonstrate the capacity of the hybrid bioadhesives to restore the biomechanics of bovine discs under cyclic loading and to prevent permanent herniation under extreme loading. This work highlights the synergy of bioadhesive and tissue-engineering approaches. Future works are expected to further improve the tissue specificity of bioadhesives and prove their efficacy for tissue repair and regeneration.
Collapse
Affiliation(s)
- Xuan Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Yin Liu
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, Quebec H3A 2B4, Canada
| | - Li Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Room C10.148.2, Montreal, QC, H3G 1A4, Canada.
| | - Ran Huo
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
- Department of Mechanical Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| | - Zhenwei Ma
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Shiyu Liu
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Zhen Yang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Michael H Weber
- Department of Surgery, McGill University, 1650 Cedar Avenue, Room C10.148.2, Montreal, QC, H3G 1A4, Canada.
| | - Nicole Y K Li-Jessen
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, Quebec H3A 2B4, Canada
- School of Communication Sciences and Disorders, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Otolaryngology-Head & Neck Surgery, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Room C10.148.2, Montreal, QC, H3G 1A4, Canada.
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, Quebec H3A 2B4, Canada
- Department of Surgery, McGill University, 1650 Cedar Avenue, Room C10.148.2, Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
16
|
Identification of the Hub Genes Involved in Stem Cell Treatment for Intervertebral Disc Degeneration: A Conjoint Analysis of Single-Cell and Machine Learning. Stem Cells Int 2023; 2023:7055264. [PMID: 36733465 PMCID: PMC9889147 DOI: 10.1155/2023/7055264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
Intervertebral disc degeneration (IDD), which is distinguished by a variety of pathologic alterations, is the major cause of low back pain (LBP). Nonetheless, preventative measures or therapies that may delay IDD are scarcely available. In this study, we sought to identify new diagnostic biological markers for IDD. In this first-of-a-kind study combining machine learning, stem cell treatment samples and single-cell sequencing data were collected. Differentially expressed genes (DEGs) were detected from the treatment group and clusters. To filter potential markers, support vector machine analysis and LASSO were performed. LAPTM5 was found to be the hub gene for IDD. In addition, the results of single-cell sequencing demonstrated the critical function of stem cells in IDD. Finally, we found that aging is significantly associated with the rate of stem cells. In general, our results may offer fresh insights that may be used in the investigation of innovative markers for diagnosing IDD. The critical genes identified by the machine learning algorithm could provide new perspectives on IDD.
Collapse
|
17
|
Liu Z, Zhu J, Liu H, Fu C. Natural products can modulate inflammation in intervertebral disc degeneration. Front Pharmacol 2023; 14:1150835. [PMID: 36874009 PMCID: PMC9978229 DOI: 10.3389/fphar.2023.1150835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Intervertebral discs (IVDs) play a crucial role in maintaining normal vertebral anatomy as well as mobile function. Intervertebral disc degeneration (IDD) is a common clinical symptom and is an important cause of low back pain (LBP). IDD is initially considered to be associated with aging and abnormal mechanical loads. However, over recent years, researchers have discovered that IDD is caused by a variety of mechanisms, including persistent inflammation, functional cell loss, accelerated extracellular matrix decomposition, the imbalance of functional components, and genetic metabolic disorders. Of these, inflammation is thought to interact with other mechanisms and is closely associated with the production of pain. Considering the key role of inflammation in IDD, the modulation of inflammation provides us with new options for mitigating the progression of degeneration and may even cause reversal. Many natural substances possess anti-inflammatory functions. Due to the wide availability of such substances, it is important that we screen and identify natural agents that are capable of regulating IVD inflammation. In fact, many studies have demonstrated the potential clinical application of natural substances for the regulation of inflammation in IDD; some of these have been proven to have excellent biosafety. In this review, we summarize the mechanisms and interactions that are responsible for inflammation in IDD and review the application of natural products for the modulation of degenerative disc inflammation.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China.,Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Jiabo Zhu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Haiyan Liu
- Department of Orthopedics, Baicheng Central Hospital, Baicheng, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|