1
|
Kırbaş OK, Bozkurt BT, Yıldırım MR, Taşlı PN, Abdik H, Şahin F, Avşar Abdik E. A Perspective on the Characterization of Early Neural Progenitor Cell-Derived Extracellular Vesicles for Targeted Delivery to Neuroblastoma Cells. Neurochem Res 2024; 49:2364-2378. [PMID: 38837091 PMCID: PMC11310242 DOI: 10.1007/s11064-024-04165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
As an element of the cellular signaling systems, extracellular vesicles (EVs) exhibit many desirable traits for usage as targeted delivery vehicles. When administered, EVs cause little to no toxic or immune response, stay in circulation for longer periods compared to synthetic carriers, preferentially accumulate in tissues that are the same or similar to their cell-of-origin and can pass through the blood-brain barrier. Combined, these traits make neural EVs a particularly promising tool for delivering drugs to the brain. This study aims to combine tissue and EVs engineering to prepare neural differentiated cells derived EVs that exhibit neural properties, to develop an effective, tissue-homing drug and gene delivery platform for the brain. Early neural differentiated cell-derived EVs were produced with neural characteristics from neural differentiated human neonatal dermal fibroblasts. The EVs carried key neural proteins such as Nestin, Sox2 and Doublecortin. The cellular uptake of early neural differentiated cell-derived EVs was higher compared to non-neural EVs during in vitro uptake assays on neuroblastoma cells. Moreover, eND-EVs were significantly decreased the viability of neuroblastoma cells. In conclusion, this study revealed that early neural differentiated cell-derived EVs have potential as a promising drug carrier for the treatment of various neural disorders.
Collapse
Affiliation(s)
- Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, 34755, Turkey
| | - Batuhan Turhan Bozkurt
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, 34755, Turkey
| | - Melis Rahime Yıldırım
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, 34755, Turkey
| | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, 34755, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, İstanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, 34755, Turkey
| | - Ezgi Avşar Abdik
- Department of Genomics, Faculty of Aquatic Sciences, Istanbul University, Istanbul, 34134, Turkey.
| |
Collapse
|
2
|
Sarkar S, Patranabis S. Emerging Role of Extracellular Vesicles in Intercellular Communication in the Brain: Implications for Neurodegenerative Diseases and Therapeutics. Cell Biochem Biophys 2024; 82:379-398. [PMID: 38300375 DOI: 10.1007/s12013-024-01221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Extracellular vesicles (EVs) are minute lipid-bilayer sacs discharged by cells, encompassing a diverse array of proteins, nucleic acids, and lipids. The identification of EVs as pivotal agents in intercellular communication has sparked compelling research pathways in the realms of cell biology and neurodegenerative diseases. Utilizing EVs for medicinal reasons has garnered interest due to the adaptability of EV-mediated communication. EVs can be classified based on their physical characteristics, biochemical composition, or cell of origin following purification. This review delves into the primary sub-types of EVs, providing an overview of the biogenesis of each type. Additionally, it explores the diverse environmental conditions triggering EV release and the originating cells, including stem cells and those from the Central Nervous System. Within the brain, EVs play a pivotal role as essential mediators of intercellular communication, significantly impacting synaptic plasticity, brain development, and the etiology of neurological diseases. Their potential diagnostic and therapeutic applications in various brain-related conditions are underscored, given their ability to carry specific cargo. Specially engineered EVs hold promise for treating diverse diseases, including neurodegenerative disorders. This study primarily emphasizes the diagnostic and potential therapeutic uses of EVs in neurological disorders such as Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Prions disease. It also summarizes innovative techniques for detecting EVs in the brain, suggesting that EVs could serve as non-invasive biomarkers for early detection, disease monitoring, and prognosis in neurological disorders.
Collapse
|
3
|
Liu X, Shen L, Wan M, Xie H, Wang Z. Peripheral extracellular vesicles in neurodegeneration: pathogenic influencers and therapeutic vehicles. J Nanobiotechnology 2024; 22:170. [PMID: 38610012 PMCID: PMC11015679 DOI: 10.1186/s12951-024-02428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis epitomize a class of insidious and relentless neurological conditions that are difficult to cure. Conventional therapeutic regimens often fail due to the late onset of symptoms, which occurs well after irreversible neurodegeneration has begun. The integrity of the blood-brain barrier (BBB) further impedes efficacious drug delivery to the central nervous system, presenting a formidable challenge in the pharmacological treatment of NDDs. Recent scientific inquiries have shifted focus toward the peripheral biological systems, investigating their influence on central neuropathology through the lens of extracellular vesicles (EVs). These vesicles, distinguished by their ability to breach the BBB, are emerging as dual operatives in the context of NDDs, both as conveyors of pathogenic entities and as prospective vectors for therapeutic agents. This review critically summarizes the burgeoning evidence on the role of extracerebral EVs, particularly those originating from bone, adipose tissue, and gut microbiota, in modulating brain pathophysiology. It underscores the duplicity potential of peripheral EVs as modulators of disease progression and suggests their potential as novel vehicles for targeted therapeutic delivery, positing a transformative impact on the future landscape of NDD treatment strategies. Search strategy A comprehensive literature search was conducted using PubMed, Web of Science, and Scopus from January 2000 to December 2023. The search combined the following terms using Boolean operators: "neurodegenerative disease" OR "Alzheimer's disease" OR "Parkinson's disease" OR "Amyotrophic lateral sclerosis" AND "extracellular vesicles" OR "exosomes" OR "outer membrane vesicles" AND "drug delivery systems" AND "blood-brain barrier". MeSH terms were employed when searching PubMed to refine the results. Studies were included if they were published in English, involved human subjects, and focused on the peripheral origins of EVs, specifically from bone, adipose tissue, and gut microbiota, and their association with related diseases such as osteoporosis, metabolic syndrome, and gut dysbiosis. Articles were excluded if they did not address the role of EVs in the context of NDDs or did not discuss therapeutic applications. The titles and abstracts of retrieved articles were screened using a dual-review process to ensure relevance and accuracy. The reference lists of selected articles were also examined to identify additional relevant studies.
Collapse
Affiliation(s)
- Xixi Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, Hunan, 410008, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| |
Collapse
|
4
|
Chang J, Feng Z, Li Y, Lv H, Liu S, Luo Y, Hao N, Zhao L, Liu J. Mesenchymal stem cell-derived extracellular vesicles: A novel promising neuroprotective agent for Alzheimer's disease. Biochem Pharmacol 2024; 222:116064. [PMID: 38373595 DOI: 10.1016/j.bcp.2024.116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive loss of neurons in the brain. However, there are no effective drugs for AD. Mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs), as a new mediator of intercellular communication, are associated with low immunogenicity, low risk of tumor formation, and good safety profile. Therefore, MSCs-EVs may be a safe and attractive cell-free nanotherapeutics, offering a new perspective for AD treatment. Although preclinical studies have demonstrated that MSCs-EVs have significant neuroprotective effects, the underlying mechanism is unclear. This study aimed to: outline the diagnostic and delivery roles of MSCs-EVs for AD treatment; summarize the optimal sources and delivery methods of MSCs-EVs; provide a comprehensive review on the neuroprotective mechanisms of MSCs-EVs; explore how to enhance the neuroprotective effects of MSCs-EVs; and discuss the limitations and potential of their translation to the clinic. Therefore, this study may provide a more precise theoretical reference and practical basis for clinical research of MSCs-EVs.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zihang Feng
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Honglin Lv
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuzhen Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yongyin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Nan Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
5
|
Lomboni DJ, Ozgun A, de Medeiros TV, Staines W, Naccache R, Woulfe J, Variola F. Electroconductive Collagen-Carbon Nanodots Nanocomposite Elicits Neurite Outgrowth, Supports Neurogenic Differentiation and Accelerates Electrophysiological Maturation of Neural Progenitor Spheroids. Adv Healthc Mater 2024; 13:e2301894. [PMID: 37922888 PMCID: PMC11481026 DOI: 10.1002/adhm.202301894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Neuronal disorders are characterized by the loss of functional neurons and disrupted neuroanatomical connectivity, severely impacting the quality of life of patients. This study investigates a novel electroconductive nanocomposite consisting of glycine-derived carbon nanodots (GlyCNDs) incorporated into a collagen matrix and validates its beneficial physicochemical and electro-active cueing to relevant cells. To this end, this work employs mouse induced pluripotent stem cell (iPSC)-derived neural progenitor (NP) spheroids. The findings reveal that the nanocomposite markedly augmented neuronal differentiation in NP spheroids and stimulate neuritogenesis. In addition, this work demonstrates that the biomaterial-driven enhancements of the cellular response ultimately contribute to the development of highly integrated and functional neural networks. Lastly, acute dizocilpine (MK-801) treatment provides new evidence for a direct interaction between collagen-bound GlyCNDs and postsynaptic N-methyl-D-aspartate (NMDA) receptors, thereby suggesting a potential mechanism underlying the observed cellular events. In summary, the findings establish a foundation for the development of a new nanocomposite resulting from the integration of carbon nanomaterials within a clinically approved hydrogel, toward an effective biomaterial-based strategy for addressing neuronal disorders by restoring damaged/lost neurons and supporting the reestablishment of neuroanatomical connectivity.
Collapse
Affiliation(s)
- David J. Lomboni
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Ottawa‐Carleton Institute for Biomedical Engineering (OCIBME)OttawaONK1N 6N5Canada
| | - Alp Ozgun
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| | - Tayline V. de Medeiros
- Department of Chemistry and Biochemistry and the Centre for NanoScience ResearchConcordia UniversityMontrealQCH4B 1R6Canada
- Quebec Centre for Advanced MaterialsDepartment of Chemistry and BiochemistryConcordia UniversityMontrealQCH4B 1R6Canada
| | - William Staines
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and the Centre for NanoScience ResearchConcordia UniversityMontrealQCH4B 1R6Canada
- Quebec Centre for Advanced MaterialsDepartment of Chemistry and BiochemistryConcordia UniversityMontrealQCH4B 1R6Canada
| | - John Woulfe
- The Ottawa Hospital Research InstituteOttawaONK1Y 4E9Canada
| | - Fabio Variola
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Ottawa‐Carleton Institute for Biomedical Engineering (OCIBME)OttawaONK1N 6N5Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| |
Collapse
|
6
|
Xiong Y, Mahmood A, Chopp M. Mesenchymal stem cell-derived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration. Neural Regen Res 2024; 19:49-54. [PMID: 37488843 PMCID: PMC10479856 DOI: 10.4103/1673-5374.374143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 07/26/2023] Open
Abstract
Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide. Despite significant advancements in the field of medicine, effective treatments for traumatic brain injury remain limited. Recently, extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury. Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells, including those in the brain, and can be engineered to contain therapeutic cargo, such as anti-inflammatory molecules, growth factors, and microRNAs. When administered intravenously, extracellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury, where they can be taken up by recipient cells and modulate the inflammatory response, promote neuroregeneration, and improve functional outcomes. In preclinical studies, extracellular vesicle-based therapies have shown promising results in promoting recovery after traumatic brain injury, including reducing neuronal damage, improving cognitive function, and enhancing motor recovery. While further research is needed to establish the safety and efficacy of extracellular vesicle-based therapies in humans, extracellular vesicles represent a promising novel approach for the treatment of traumatic brain injury. In this review, we summarize mesenchymal stem/stromal cell-derived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brain-derived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
7
|
Ofir R. Special Issue "Stem Cell Biology & Regenerative Medicine". Int J Mol Sci 2023; 24:12855. [PMID: 37629035 PMCID: PMC10454503 DOI: 10.3390/ijms241612855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
More than 50% of pre-clinical studies fail despite a long and expensive journey of drug discovery using animal models [...].
Collapse
Affiliation(s)
- Rivka Ofir
- BGU-iPSC Core Facility, The Regenerative Medicine & Stem Cell (RMSC) Research Center, Ben Gurion University of the Negev, Israel and Desert & Dead Sea R&D, Central Arava Branch, Be'er Sheva 84105, Israel
| |
Collapse
|
8
|
Roh EJ, Kim DS, Kim JH, Lim CS, Choi H, Kwon SY, Park SY, Kim JY, Kim HM, Hwang DY, Han DK, Han I. Multimodal therapy strategy based on a bioactive hydrogel for repair of spinal cord injury. Biomaterials 2023; 299:122160. [PMID: 37209541 DOI: 10.1016/j.biomaterials.2023.122160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Traumatic spinal cord injury results in permanent and serious neurological impairment, but there is no effective treatment yet. Tissue engineering approaches offer great potential for the treatment of SCI, but spinal cord complexity poses great challenges. In this study, the composite scaffold consists of a hyaluronic acid-based hydrogel, decellularized brain matrix (DBM), and bioactive compounds such as polydeoxyribonucleotide (PDRN), tumor necrosis factor-α/interferon-γ primed mesenchymal stem cell-derived extracellular vesicles (TI-EVs), and human embryonic stem cell-derived neural progenitor cells (NPC). The composite scaffold showed significant effects on regenerative prosses including angiogenesis, anti-inflammation, anti-apoptosis, and neural differentiation. In addition, the composite scaffold (DBM/PDRN/TI-EV/NPC@Gel) induced an effective spinal cord regeneration in a rat spinal cord transection model. Therefore, this multimodal approach using an integrated bioactive scaffold coupled with biochemical cues from PDRN and TI-EVs could be used as an advanced tissue engineering platform for spinal cord regeneration.
Collapse
Affiliation(s)
- Eun Ji Roh
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; School of Integrative Engineering Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Chang Su Lim
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Su Yeon Kwon
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; Division of Biotechnology College of Life Sciences and Biotechnology Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hyun-Mun Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Dong-Youn Hwang
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| | - Inbo Han
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
9
|
Karnas E, Dudek P, Zuba-Surma EK. Stem cell- derived extracellular vesicles as new tools in regenerative medicine - Immunomodulatory role and future perspectives. Front Immunol 2023; 14:1120175. [PMID: 36761725 PMCID: PMC9902918 DOI: 10.3389/fimmu.2023.1120175] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
In the last few decades, the practical use of stem cells (SCs) in the clinic has attracted significant attention in the regenerative medicine due to the ability of these cells to proliferate and differentiate into other cell types. However, recent findings have demonstrated that the therapeutic capacity of SCs may also be mediated by their ability to secrete biologically active factors, including extracellular vesicles (EVs). Such submicron circular membrane-enveloped vesicles may be released from the cell surface and harbour bioactive cargo in the form of proteins, lipids, mRNA, miRNA, and other regulatory factors. Notably, growing evidence has indicated that EVs may transfer their bioactive content into recipient cells and greatly modulate their functional fate. Thus, they have been recently envisioned as a new class of paracrine factors in cell-to-cell communication. Importantly, EVs may modulate the activity of immune system, playing an important role in the regulation of inflammation, exhibiting broad spectrum of the immunomodulatory activity that promotes the transition from pro-inflammatory to pro-regenerative environment in the site of tissue injury. Consequently, growing interest is placed on attempts to utilize EVs in clinical applications of inflammatory-related dysfunctions as potential next-generation therapeutic factors, alternative to cell-based approaches. In this review we will discuss the current knowledge on the biological properties of SC-derived EVs, with special focus on their role in the regulation of inflammatory response. We will also address recent findings on the immunomodulatory and pro-regenerative activity of EVs in several disease models, including in vitro and in vivo preclinical, as well as clinical studies. Finally, we will highlight the current perspectives and future challenges of emerging EV-based therapeutic strategies of inflammation-related diseases treatment.
Collapse
|
10
|
Kim JY, Rhim WK, Cha SG, Woo J, Lee JY, Park CG, Han DK. Bolstering the secretion and bioactivities of umbilical cord MSC-derived extracellular vesicles with 3D culture and priming in chemically defined media. NANO CONVERGENCE 2022; 9:57. [PMID: 36534191 PMCID: PMC9761620 DOI: 10.1186/s40580-022-00349-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 06/12/2023]
Abstract
Human mesenchymal stem cells (hMSCs)-derived extracellular vesicles (EVs) have been known to possess the features of the origin cell with nano size and have shown therapeutic potentials for regenerative medicine in recent studies as alternatives for cell-based therapies. However, extremely low production yield, unknown effects derived from serum impurities, and relatively low bioactivities on doses must be overcome for translational applications. As several reports have demonstrated the tunability of secretion and bioactivities of EVs, herein, we introduced three-dimensional (3D) culture and cell priming approaches for MSCs in serum-free chemically defined media to exclude side effects from serum-derived impurities. Aggregates (spheroids) with 3D culture dramatically enhanced secretion of EVs about 6.7 times more than cells with two-dimensional (2D) culture, and altered surface compositions. Further modulation with cell priming with the combination of TNF-α and IFN-γ (TI) facilitated the production of EVs about 1.4 times more than cells without priming (9.4 times more than cells with 2D culture without priming), and bioactivities of EVs related to tissue regenerations. Interestingly, unlike changing 2D to 3D culture, TI priming altered internal cytokines of MSC-derived EVs. Through simulating characteristics of EVs with bioinformatics analysis, the regeneration-relative properties such as angiogenesis, wound healing, anti-inflammation, anti-apoptosis, and anti-fibrosis, for three different types of EVs were comparatively analyzed using cell-based assays. The present study demonstrated that a combinatory strategy, 3D cultures and priming MSCs in chemically defined media, provided the optimum environments to maximize secretion and regeneration-related bioactivities of MSC-derived EVs without impurities for future translational applications.
Collapse
Affiliation(s)
- Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jiwon Woo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Joo Youn Lee
- Xcell Therapeutics, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
11
|
The Upregulation of Regenerative Activity for Extracellular Vesicles with Melatonin Modulation in Chemically Defined Media. Int J Mol Sci 2022; 23:ijms232315089. [PMID: 36499413 PMCID: PMC9736868 DOI: 10.3390/ijms232315089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular vesicles (EVs) derived from human mesenchymal stem cells (hMSCs) have been widely known to have therapeutic effects by representing characteristics of the origin cells as an alternative for cell-based therapeutics. Major limitations of EVs for clinical applications include low production yields, unknown effects from serum impurities, and relatively low bioactivities against dose. In this study, we proposed a cell modulation method with melatonin for human umbilical cord MSCs (hUCMSCs) cultured in serum-free chemically defined media (CDM) to eliminate the effects of serum-derived impurities and promote regeneration-related activities. miRNAs highly associated with regeneration were selected and the expression levels of them were comparatively analyzed among various types of EVs depending on culture conditions. The EVs derived from melatonin-stimulated hUCMSCs in CDM (CDM mEVs) showed the highest expression levels of regeneration-related miRNAs, and 7 times more hsa-let-7b-5p, 5.6 times more hsa-miR-23a-3p, and 5.7 times more hsa-miR-100-5p than others, respectively. In addition, the upregulation of various functionalities, such as wound healing, angiogenesis, anti-inflammation, ROS scavenging, and anti-apoptosis, were proven using in vitro assays by simulating the characteristics of EVs with bioinformatics analysis. The present results suggest that the highly regenerative properties of hUCMSC-derived EVs were accomplished with melatonin stimulation in CDM and provided the potential for clinical uses of EVs.
Collapse
|
12
|
Baek SW, Kim DS, Song DH, Lee S, Lee JK, Park SY, Kim JH, Kim TH, Park CG, Han DK. PLLA Composites Combined with Delivery System of Bioactive Agents for Anti-Inflammation and Re-Endothelialization. Pharmaceutics 2022; 14:pharmaceutics14122661. [PMID: 36559156 PMCID: PMC9782680 DOI: 10.3390/pharmaceutics14122661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The development of a biodegradable vascular scaffold (BVS) for the treatment of cardiovascular diseases (CVDs) still requires some improvement. Among them, re-endothelialization and anti-inflammation are clinically important to restore vascular function. In this study, we proposed a coating system to deliver hydrophilic bioactive agents to BVS using nanoemulsion and drop-casting methods. The poly(L-lactide) (PLLA) scaffold containing magnesium hydroxide (MH) was coated on the surface with bioactive molecules such as polydeoxyribonucleotide (PDRN), L-arginine (Arg, R), and mesenchymal stem cell-derived extracellular vesicles (EVs). PDRN upregulates the expression of VEGF as one of the A2A receptor agonists; and Arg, synthesized into nitric oxide by intracellular eNOS, induces endothelialization. In particular, EVs, which are composed of a lipid bilayer and transfer bioactive materials such as protein and nucleic acid, regulate homeostasis in blood vessels. Such a bioactive agent coating system and its PLLA composite suggest a new platform for the treatment of cardiovascular dysfunction.
Collapse
Affiliation(s)
- Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Duck Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Semi Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- Correspondence:
| |
Collapse
|