1
|
Villanueva A, Rivero-Pino F, Martin ME, Gonzalez-de la Rosa T, Montserrat-de la Paz S, Millan-Linares MC. Identification of the Bioavailable Peptidome of Chia Protein Hydrolysate and the In Silico Evaluation of Its Antioxidant and ACE Inhibitory Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3189-3199. [PMID: 38305180 PMCID: PMC10870759 DOI: 10.1021/acs.jafc.3c05331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
The incorporation of novel, functional, and sustainable foods in human diets is increasing because of their beneficial effects and environmental-friendly nature. Chia (Salvia hispanica L.) has proved to be a suitable source of bioactive peptides via enzymatic hydrolysis. These peptides could be responsible for modulating several physiological processes if able to reach the target organ. The bioavailable peptides contained in a hydrolysate obtained with Alcalase, as functional foods, were identified using a transwell system with Caco-2 cell culture as the absorption model. Furthermore, 20 unique peptides with a molecular weight lower than 1000 Da and the higher statistical significance of the peptide-precursor spectrum match (-10 log P) were assessed by in silico tools to suggest which peptides could be those exerting the demonstrated bioactivity. From the characterized peptides, considering the molecular features and the results obtained, the peptides AGDAHWTY, VDAHPIKAM, PNYHPNPR, and ALPPGAVHW are anticipated to be contributing to the antioxidant and/or ACE inhibitor activity of the chia protein hydrolysates.
Collapse
Affiliation(s)
- Alvaro Villanueva
- Department
of Food and Health, Instituto de la Grasa
(IG-CSIC), Ctra. Utrera
Km 1, 41013 Seville, Spain
| | - Fernando Rivero-Pino
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Maria E. Martin
- Department
of Cell Biology, Faculty of Biology, University
of Seville, Av. Reina
Mercedes s/n, 41012 Seville, Spain
| | - Teresa Gonzalez-de la Rosa
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Maria C. Millan-Linares
- Department
of Food and Health, Instituto de la Grasa
(IG-CSIC), Ctra. Utrera
Km 1, 41013 Seville, Spain
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
2
|
Gupta P, Geniza M, Elser J, Al-Bader N, Baschieri R, Phillips JL, Haq E, Preece J, Naithani S, Jaiswal P. Reference genome of the nutrition-rich orphan crop chia ( Salvia hispanica) and its implications for future breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1272966. [PMID: 38162307 PMCID: PMC10757625 DOI: 10.3389/fpls.2023.1272966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Chia (Salvia hispanica L.) is one of the most popular nutrition-rich foods and pseudocereal crops of the family Lamiaceae. Chia seeds are a rich source of proteins, polyunsaturated fatty acids (PUFAs), dietary fibers, and antioxidants. In this study, we present the assembly of the chia reference genome, which spans 303.6 Mb and encodes 48,090 annotated protein-coding genes. Our analysis revealed that ~42% of the chia genome harbors repetitive content, and identified ~3 million single nucleotide polymorphisms (SNPs) and 15,380 simple sequence repeat (SSR) marker sites. By investigating the chia transcriptome, we discovered that ~44% of the genes undergo alternative splicing with a higher frequency of intron retention events. Additionally, we identified chia genes associated with important nutrient content and quality traits, such as the biosynthesis of PUFAs and seed mucilage fiber (dietary fiber) polysaccharides. Notably, this is the first report of in-silico annotation of a plant genome for protein-derived small bioactive peptides (biopeptides) associated with improving human health. To facilitate further research and translational applications of this valuable orphan crop, we have developed the Salvia genomics database (SalviaGDB), accessible at https://salviagdb.org.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Noor Al-Bader
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Rachel Baschieri
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeremy Levi Phillips
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Ebaad Haq
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
3
|
Aguilar-Toalá JE, Vidal-Limon A, Liceaga AM, Zambrano-Zaragoza ML, Quintanar-Guerrero D. Application of Molecular Dynamics Simulations to Determine Interactions between Canary Seed ( Phalaris canariensis L.) Bioactive Peptides and Skin-Aging Enzymes. Int J Mol Sci 2023; 24:13420. [PMID: 37686226 PMCID: PMC10487734 DOI: 10.3390/ijms241713420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Food bioactive peptides are well recognized for their health benefits such as antimicrobial, antioxidant, and antihypertensive benefits, among others. Their drug-like behavior has led to their potential use in targeting skin-related aging factors like the inhibition of enzymes related with the skin-aging process. In this study, canary seed peptides (CSP) after simulated gastrointestinal digestion (<3 kDa) were fractioned by RP-HPLC and their enzyme-inhibition activity towards elastase and tyrosinase was evaluated in vitro. CSP inhibited elastase (IC50 = 6.2 mg/mL) and tyrosinase (IC50 = 6.1 mg/mL), while the hydrophobic fraction-VI (0.2 mg/mL) showed the highest inhibition towards elastase (93%) and tyrosinase (67%). The peptide fraction with the highest inhibition was further characterized by a multilevel in silico workflow, including physicochemical descriptor calculations, antioxidant activity predictions, and molecular dynamics-ensemble docking towards elastase and tyrosinase. To gain insights into the skin permeation process during molecular dynamics simulations, based on their docking scores, five peptides (GGWH, VPPH, EGLEPNHRVE, FLPH, and RPVNKYTPPQ) were identified to have favorable intermolecular interactions, such as hydrogen bonding of polar residues (W, H, and K) to lipid polar groups and 2-3 Å van der Waals close contact of hydrophobic aliphatic residues (P, V, and L). These interactions can play a critical role for the passive insertion of peptides into stratum corneum model skin-membranes, suggesting a promising application of CSP for skin-aging treatments.
Collapse
Affiliation(s)
- José E. Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma. Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico;
| | - Abraham Vidal-Limon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Purdue University, 745 Agriculture Mall, West Lafayette, IN 47907, USA
| | - Maria L. Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos-UIM, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Estado de México, Mexico;
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Av. 1o de Mayo s/n, Cuautitlán Izcalli 54714, Estado de México, Mexico;
| |
Collapse
|
4
|
Agarwal A, Rizwana, Tripathi AD, Kumar T, Sharma KP, Patel SKS. Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds. Antioxidants (Basel) 2023; 12:1413. [PMID: 37507952 PMCID: PMC10376479 DOI: 10.3390/antiox12071413] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd) and chia (Salvia hispanica) are essential traditional crops with excellent nutritional properties. Quinoa is known for its high and good quality protein content and nine essential amino acids vital for an individual's development and growth, whereas chia seeds contain high dietary fiber content, calories, lipids, minerals (calcium, magnesium, iron, phosphorus, and zinc), and vitamins (A and B complex). Chia seeds are also known for their presence of a high amount of omega-3 fatty acids. Both quinoa and chia seeds are gluten-free and provide medicinal properties due to bioactive compounds, which help combat various chronic diseases such as diabetes, obesity, cardiovascular diseases, and metabolic diseases such as cancer. Quinoa seeds possess phenolic compounds, particularly kaempferol, which can help prevent cancer. Many food products can be developed by fortifying quinoa and chia seeds in different concentrations to enhance their nutritional profile, such as extruded snacks, meat products, etc. Furthermore, it highlights the value-added products that can be developed by including quinoa and chia seeds, alone and in combination. This review focused on the recent development in quinoa and chia seeds nutritional, bioactive properties, and processing for potential human health and therapeutic applications.
Collapse
Affiliation(s)
- Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, Sikandra Road, New Delhi 110001, India
| | - Rizwana
- Department of Food Technology, Bhaskaracharya College of Applied Sciences, Sector-2, Dwarka, New Delhi 110075, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Tarika Kumar
- Department of Environmental Studies, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Kanti Prakash Sharma
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123031, India
| | | |
Collapse
|
5
|
Fan Z, Jia W. Lactobacillus casei-Derived Postbiotics Elevate the Bioaccessibility of Proteins via Allosteric Regulation of Pepsin and Trypsin and Introduction of Endopeptidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37410960 DOI: 10.1021/acs.jafc.3c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The potential of probiotics to benefit digestion has been widely reported, while its utilization in high-risk patients and potential adverse reactions have focused interest on postbiotics. A variable data-independent acquisition (vDIA)-based spatial-omics strategy integrated with unsupervised variational autoencoders was applied to profile the functional mechanism underlying the action of Lactobacillus casei-derived postbiotic supplementation in goat milk digestion in an infant digestive system, from a metabolomics-peptidomics-proteomics perspective. Amide and olefin derivatives were proved to elevate the activities of pepsin and trypsin through hydrogen bonding and hydrophobic forces based on allosteric effects, and recognition of nine endopeptidases and their cleavage to serine, proline, and aspartate were introduced by postbiotics, thereby promoting the generation of hydrophilic peptides and elevating the bioaccessibility of goat milk protein. The peptides originating from αs1-casein, β-casein, β-lactoglobulin, Ig-like domain-containing protein, κ-casein, and serum amyloid A protein, with multiple bioactivities including angiotensin I-converting enzyme (ACE)-inhibitory, osteoanabolic, dipeptidyl peptidase IV (DPP-IV) inhibitory, antimicrobial, bradykinin-potentiating, antioxidant, and anti-inflammatory activities, were significantly increased in the postbiotic supplementation group, which was also considered to potentially prevent necrotizing enterocolitis through inhibiting the multiplication of pathogenic bacteria and blocking signal transducer and activator of transcription 1 and nuclear factor kappa-light-chain-enhancer of activated B cells inflammatory pathways. This research deepened the understanding of the mechanism underlying the postbiotics affecting goat milk digestion, which established a critical groundwork for the clinical application of postbiotics in infant complementary foods.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| |
Collapse
|
6
|
Zhao Y, Zhang T, Ning Y, Wang D, Li F, Fan Y, Yao J, Ren G, Zhang B. Identification and molecular mechanism of novel tyrosinase inhibitory peptides from the hydrolysate of 'Fengdan' peony (Paeonia ostii) seed meal proteins: Peptidomics and in silico analysis. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Mora L, Toldrá F. Special Issue: Food Bioactive Peptides. Int J Mol Sci 2022; 23:ijms232415985. [PMID: 36555626 PMCID: PMC9785551 DOI: 10.3390/ijms232415985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
This Special Issue of the International Journal of Molecular Sciences is focused on bioactive peptides in foods or hydrolyzates of food by-products, the methods for the extraction and purification of bioactive peptides, their structural and functional characterization, and the mechanisms of action that regulate their activity and support the reported health benefits [...].
Collapse
|
8
|
Aguilar-Toalá JE, Vidal-Limon A, Liceaga AM. Nutricosmetics: A new frontier in bioactive peptides' research toward skin aging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 104:205-228. [PMID: 37236732 DOI: 10.1016/bs.afnr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Food derived bioactive peptides are small protein fragments (2-20 amino acids long) that can exhibit health benefits, beyond basic nutrition. For example, food bioactive peptides can act as physiological modulators with hormone or drug-like activities including anti-inflammatory, antimicrobial, antioxidant, and the ability to inhibit enzymes related to chronic disease metabolism. Recently, bioactive peptides have been studied for their potential role as nutricosmetics. For example, bioactive peptides can impart skin-aging protection toward extrinsic (i.e., environmental and sun UV-ray damage) and intrinsic (i.e., natural cell or chronological aging) factors. Specifically, bioactive peptides have demonstrated antioxidant and antimicrobial activates toward reactive oxygen species (ROS) and pathogenic bacteria associated with skin diseases, respectively. The anti-inflammatory properties of bioactive peptides using in vivo models has also been reported, where peptides have shown to decreased the expression of IL-6, TNF-α, IL-1β, interferon-γ (INF-γ), and interleukin-17 (IL-17) in mice models. This chapter will discuss the main factors that trigger skin-aging processes, as well as provide examples of in vitro, in vivo, and in silico applications of bioactive peptides in relation to nutricosmetic applications.
Collapse
Affiliation(s)
- J E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - A Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Veracruz, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|