1
|
Wang X, Zhao P, Zhang C, Li C, Ma Y, Huang S. Effects of supplemental Glycyrrhiza polysaccharide on growth performance and intestinal health in weaned piglets. Anim Biotechnol 2024; 35:2362640. [PMID: 38860902 DOI: 10.1080/10495398.2024.2362640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In this study, we investigated the effects of supplemental Glycyrrhiza polysaccharide (GCP) on growth performance and intestinal health of weaned piglets. Ninety piglets weaned at 28 days of age were randomly allocated to three groups with five replicates per treatment. Piglets were fed the following diets for 28 days: (1) CON (control group), basal diet; (2) G500, CON + 500 mg/kg GCP; (3) G1000, CON + 1000 mg/kg GCP. The results showed that supplementation with 1000 mg/kg GCP increased the average daily gain (ADG) and decreased the feed-to-gain ratio (F/G) (P < 0.05). Serum diamine oxidase (DAO) and D-lactic acid (DL-A) levels were lower in the G1000 group (P < 0.05). Dietary GCP 1000 mg/kg improved mucosal trypsin activity in the duodenum, jejunum and ileum and increased lipase and amylase activity in the jejunum (P < 0.05). Moreover, in the G1000 group, ZO-1, claudin 1 and occludin levels were increased in the jejunum mucosa, whereas interleukin-1β (IL-1β) and IL-6 levels were decreased (P < 0.05). The 16S rRNA gene analysis indicated that dietary 1000 mg/kg GCP altered the jejunal microbial community, with increased relative abundances of beneficial bacteria. In conclusion, dietary GCP 1000 mg/kg can improve growth performance, digestive enzyme activity, intestinal immunity, barrier function and microbial community in weaned piglets.
Collapse
Affiliation(s)
- Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Pengli Zhao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Chenxu Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Shucheng Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| |
Collapse
|
2
|
Asadi K, Heidari R, Hamidi M, Ommati MM, Yousefzadeh-Chabok S, Samiraninezhad N, Khoshneviszadeh M, Hashemzaei M, Gholami A. Trinitroglycerin-loaded chitosan nanogels: Shedding light on cytotoxicity, antioxidativity, and antibacterial activities. Int J Biol Macromol 2024; 265:130654. [PMID: 38553395 DOI: 10.1016/j.ijbiomac.2024.130654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/18/2024]
Abstract
AIM AND BACKGROUND Trinitroglycerin (TNG) is a remarkable NO-releasing agent. Here, we synthesized TNG based on chitosan Nanogels (Ngs) for ameliorating complications associated with high-dose TNG administration. METHOD TNG-Ngs fabricated through ionic-gelation technique. Fourier-transformed infrared (FT-IR), zeta-potential, dynamic light scattering (DLS), and electron microscopy techniques evaluated the physicochemical properties of TNG-Ngs. MTT was used to assess the biocompatibility of TNG-Ngs, as the antioxidative properties were determined via lactate dehydrogenase (LDH), reactive oxygen species (ROS), and lipid peroxide (LPO) assays. The antibacterial activity was evaluated against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE). RESULTS Physicochemical characterization reveals that TNG-Ngs with size diameter (96.2 ± 29 nm), polydispersity index (PDI, 0.732), and negative zeta potential (-1.1 mv) were fabricated. The encapsulation efficacy (EE) and loading capacity (LC) were obtained at 71.1 % and 2.3 %, respectively, with no considerable effect on particle size and morphology. The cytotoxicity assay demonstrated that HepG2 cells exposed to TNG-Ngs showed relative cell viability (RCV) of >80 % for 70 μg/ml compared to the TNG-free drug at the same concentration (P < 0.05). TNG-Ngs showed significant differences with the TNG-free drug for LDH, LPO, and ROS formation at the same concentration (P < 0.001). The antibacterial activity of the TNG-Ngs against S. aureus, E. coli, VRE, and MRSA was higher than the TNG-free drug and Ngs (P < 0.05). CONCLUSION TNG-Ngs with enhanced antibacterial and antioxidative activity and no obvious cytotoxicity might be afforded as novel nanoformulation for promoting NO-dependent diseases.
Collapse
Affiliation(s)
- Khatereh Asadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Hamidi
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | | | | | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Hashemzaei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Nastasi MR, Caruso L, Giordano F, Mellini M, Rampioni G, Giuffrè A, Forte E. Cyanide Insensitive Oxidase Confers Hydrogen Sulfide and Nitric Oxide Tolerance to Pseudomonas aeruginosa Aerobic Respiration. Antioxidants (Basel) 2024; 13:383. [PMID: 38539916 PMCID: PMC10968556 DOI: 10.3390/antiox13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 07/31/2024] Open
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are long-known inhibitors of terminal oxidases in the respiratory chain. Yet, they exert pivotal signaling roles in physiological processes, and in several bacterial pathogens have been reported to confer resistance against oxidative stress, host immune responses, and antibiotics. Pseudomonas aeruginosa, an opportunistic pathogen causing life-threatening infections that are difficult to eradicate, has a highly branched respiratory chain including four terminal oxidases of the haem-copper type (aa3, cbb3-1, cbb3-2, and bo3) and one oxidase of the bd-type (cyanide-insensitive oxidase, CIO). As Escherichia coli bd-type oxidases have been shown to be H2S-insensitive and to readily recover their activity from NO inhibition, here we tested the effect of H2S and NO on CIO by performing oxygraphic measurements on membrane preparations from P. aeruginosa PAO1 and isogenic mutants depleted of CIO only or all other terminal oxidases except CIO. We show that O2 consumption by CIO is unaltered even in the presence of high levels of H2S, and that CIO expression is enhanced and supports bacterial growth under such stressful conditions. In addition, we report that CIO is reversibly inhibited by NO, while activity recovery after NO exhaustion is full and fast, suggesting a protective role of CIO under NO stress conditions. As P. aeruginosa is exposed to H2S and NO during infection, the tolerance of CIO towards these stressors agrees with the proposed role of CIO in P. aeruginosa virulence.
Collapse
Affiliation(s)
- Martina R. Nastasi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Lorenzo Caruso
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Francesca Giordano
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Marta Mellini
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Giordano Rampioni
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Alessandro Giuffrè
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| |
Collapse
|
4
|
Webster CM, Shepherd M. The nitric oxide paradox: antimicrobial and inhibitor of antibiotic efficacy. Emerg Top Life Sci 2024; 8:37-43. [PMID: 37975610 PMCID: PMC10903473 DOI: 10.1042/etls20230114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
It is well-known that antibiotics target energy-consuming processes and a significant body of research now supports the conclusion that the metabolic state of bacteria can have a profound impact upon the efficacy of antibiotics. Several articles implicate bacterial energetics and the respiratory inhibitor nitric oxide (NO) in this process, although pinpointing the precise mechanism for how NO can diminish the potency of a range of antibiotics through modulating bacterial energy metabolism has proved challenging. Herein, we introduce the role of NO during infection, consider known links between NO and antibiotic efficacy, and discuss potential mechanisms via which NO present at the site of infection could mediate these effects through controlling bacterial energetics. This perspective article highlights an important relationship between NO and antibiotic action that has largely been overlooked and outlines future considerations for the development of new drugs and therapies that target bacterial energy metabolism.
Collapse
Affiliation(s)
- Calum M Webster
- School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NJ, U.K
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NJ, U.K
| |
Collapse
|
5
|
Nastasi MR, Borisov VB, Forte E. Membrane-Bound Redox Enzyme Cytochrome bd-I Promotes Carbon Monoxide-Resistant Escherichia coli Growth and Respiration. Int J Mol Sci 2024; 25:1277. [PMID: 38279276 PMCID: PMC10815991 DOI: 10.3390/ijms25021277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O2 to 2H2O taking out electrons from quinol or cytochrome c. Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO. However, our knowledge of this issue is limited and contradictory. Here, we investigated the effect of CO on the cell growth and aerobic respiration of three different Escherichia coli mutants, each expressing only one terminal quinol oxidase: cytochrome bd-I, cytochrome bd-II, or cytochrome bo3. We found that following the addition of CO to bd-I-only cells, a minimal effect on growth was observed, whereas the growth of both bd-II-only and bo3-only strains was severely impaired. Consistently, the degree of resistance of aerobic respiration of bd-I-only cells to CO is high, as opposed to high CO sensitivity displayed by bd-II-only and bo3-only cells consuming O2. Such a difference between the oxidases in sensitivity to CO was also observed with isolated membranes of the mutants. Accordingly, O2 consumption of wild-type cells showed relatively low CO sensitivity under conditions favoring the expression of a bd-type oxidase.
Collapse
Affiliation(s)
- Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
6
|
Borisov VB. Generation of Membrane Potential by Cytochrome bd. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1504-1512. [PMID: 38105020 DOI: 10.1134/s0006297923100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 12/19/2023]
Abstract
An overview of current notions on the mechanism of generation of a transmembrane electric potential difference (Δψ) during the catalytic cycle of a bd-type triheme terminal quinol oxidase is presented in this work. It is suggested that the main contribution to Δψ formation is made by the movement of H+ across the membrane along the intra-protein hydrophilic proton-conducting pathway from the cytoplasm to the active site for oxygen reduction of this bacterial enzyme.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Capela R, Félix R, Clariano M, Nunes D, Perry MDJ, Lopes F. Target Identification in Anti-Tuberculosis Drug Discovery. Int J Mol Sci 2023; 24:10482. [PMID: 37445660 DOI: 10.3390/ijms241310482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), a disease that, although preventable and curable, remains a global epidemic due to the emergence of resistance and a latent form responsible for a long period of treatment. Drug discovery in TB is a challenging task due to the heterogeneity of the disease, the emergence of resistance, and uncomplete knowledge of the pathophysiology of the disease. The limited permeability of the cell wall and the presence of multiple efflux pumps remain a major barrier to achieve effective intracellular drug accumulation. While the complete genome sequence of Mtb has been determined and several potential protein targets have been validated, the lack of adequate models for in vitro and in vivo studies is a limiting factor in TB drug discovery programs. In current therapeutic regimens, less than 0.5% of bacterial proteins are targeted during the biosynthesis of the cell wall and the energetic metabolism of two of the most important processes exploited for TB chemotherapeutics. This review provides an overview on the current challenges in TB drug discovery and emerging Mtb druggable proteins, and explains how chemical probes for protein profiling enabled the identification of new targets and biomarkers, paving the way to disruptive therapeutic regimens and diagnostic tools.
Collapse
Affiliation(s)
- Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita Félix
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Clariano
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Diogo Nunes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria de Jesus Perry
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
8
|
Wang G, He X, Wang Q. Intratumoral bacteria are an important "accomplice" in tumor development and metastasis. Biochim Biophys Acta Rev Cancer 2023; 1878:188846. [PMID: 36496095 DOI: 10.1016/j.bbcan.2022.188846] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
As emerging tumor components, intratumoral bacteria have been found in many solid tumors. Several studies have demonstrated that different cancer subtypes have distinct microbial compositions, and mechanistic studies have shown that intratumoral bacteria may promote cancer initiation and progression through DNA damage, epigenetic modification, inflammatory responses, modulation of host immunity and activation of oncogenes or oncogenic pathways. Moreover, intratumoral bacteria have been shown to modulate tumor metastasis and chemotherapy response. A better understanding of the tumor microenvironment and its associated microbiota will facilitate the design of new metabolically engineered species, opening up a new era of intratumoral bacteria-based cancer therapy. However, many questions remain to be resolved, such as where intratumoral bacteria originate and whether there is a direct causal relationship between intratumoral bacteria and tumor susceptibility. In addition, suitable preclinical models and more advanced detection techniques are crucial for studying the biological functions of intratumoral bacteria. In this review, we summarize the complicated role of intratumoral bacteria in the regulation of cancer development and metastasis and discuss their carcinogenic mechanisms and potential therapeutic aspects.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Department of General Surgery, The 74th Group Army Hospital, Guangzhou 510318, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|