1
|
Muqaku B, Anderl-Straub S, Werner L, Nagl M, Otto M, Teunissen CE, Oeckl P. Contactin proteins in cerebrospinal fluid show different alterations in dementias. J Neurol 2024; 271:7516-7524. [PMID: 39317877 PMCID: PMC11588959 DOI: 10.1007/s00415-024-12694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The proteins contactin (CNTN) 1-6 are synaptic proteins for which there is evidence that they are dysregulated in neurodegenerative dementias. Less is known about CNTN changes and differences in cerebrospinal fluid (CSF) of dementias, which can provide important information about alterations of the CNTN network and be of value for differential diagnosis. METHODS We developed a mass spectrometry-based multiple reaction monitoring (MRM) method to simultaneously determine all six CNTNs in CSF samples using stable isotope-labeled standard peptides. The analytical performance of the method was evaluated for peptide stability, dilution linearity and precision. CNTNs were measured in 82 CSF samples from patients with Alzheimer's disease (AD, n = 19), behavioural variant frontotemporal dementia (bvFTD, n = 18), Parkinson's disease dementia/dementia with Lewy bodies (PDD/DLB, n = 18) and non-neurodegenerative controls (n = 27) and compared with core AD biomarkers. RESULTS The MRM analysis revealed down-regulation of CNTN2 (fold change (FC) = 0.77), CNTN4 (FC = 0.75) and CNTN5 (FC = 0.67) in bvFTD and CNTN3 (FC = 0.72), CNTN4 (FC = 0.75) and CNTN5 (FC = 0.73) in PDD/DLB compared to AD. CNTN levels strongly correlated with each other in controls (r = 0.73), bvFTD (r = 0.86) and PDD/DLB (r = 0.70), but the correlation was significantly lower in AD (r = 0.41). CNTNs in AD did not show correlation even with core AD biomarkers. Combined use of CNTN1-6 levels increased diagnostic performance of AD core biomarkers. CONCLUSIONS Our data show CNTNs differentially altered in dementias and indicate CNTN homeostasis being selectively dysregulated in AD. The combined use of CNTNs with AD core biomarkers might help to improve differential diagnosis.
Collapse
Affiliation(s)
- Besnik Muqaku
- German Center for Neurodegenerative Diseases (DZNE E.V.), Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Sarah Anderl-Straub
- Department of Neurology, Ulm University Hospital, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Leonie Werner
- Department of Neurology, Ulm University Hospital, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Magdalena Nagl
- Department of Neurology, Ulm University Hospital, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (UMC), Amsterdam, The Netherlands
| | - Patrick Oeckl
- German Center for Neurodegenerative Diseases (DZNE E.V.), Helmholtzstr. 8/1, 89081, Ulm, Germany.
- Department of Neurology, Ulm University Hospital, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
2
|
Lumi R, Petri S, Siwy J, Latosinska A, Raad J, Zürbig P, Skripuletz T, Mischak H, Beige J. Small peptide CSF fingerprint of amyotrophic lateral sclerosis. PLoS One 2024; 19:e0302280. [PMID: 38687737 PMCID: PMC11060592 DOI: 10.1371/journal.pone.0302280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by abnormal protein aggregation in the motor neurons. Present and earlier proteomic studies to characterize peptides in cerebrospinal fluid (CSF) associated with motoneuron pathology did not target low molecular weight proteins and peptides. We hypothesized that specific changes in CSF peptides or low molecular weight proteins are significantly altered in ALS, and that these changes may support deciphering molecular pathophysiology and even guide approaches towards therapeutic interventions. METHODS Cerebrospinal fluid (CSF) from 50 ALS patients and 50 non-ALS controls was collected, centrifuged immediately after collection, aliquoted into polypropylene test tubes, frozen within 30-40 min after the puncture, and stored at -80°C until use. Peptides were sequenced using capillary electrophoresis or liquid chromatography/mass spectrometry (CE-MS/MS or LC-MS/MS). FINDINGS In the CSF of 50 patients and 50 non-ALS controls 33 peptides were found, of which 14 could be sequenced using a non-lytic single-pot proteomic detection method, CE/MS. ALS deregulated peptides vs. controls included Integral membrane protein 2B, Neurosecretory protein VGF, Osteopontin, Neuroendocrine protein 7B2 (Secretogranin-V), EGF-containing fibulin-like extracellular matrix protein 1, Xylosyltransferase 1 XT-1, Chromogranin-A, Superoxide dismutase SOD-1, Secretogranin-1 (Chromogranin B), NR2F2 Nuclear Receptor Subfamily 2 Group F Member 2 and Collagen alpha-1(VII) chain. INTERPRETATION Most striking deregulations in CSF from ALS patients were found in VGF, Osteopontin, SOD-1 and EFEMP1 peptides. No associations of disease severity, duration and region of onset with sequenced peptides were found.
Collapse
Affiliation(s)
- Rea Lumi
- Department of Neurology, Hannover University Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover University Medical School, Hannover, Germany
| | | | | | - Julia Raad
- Mosaiques Diagnostics GmbH, Hannover, Germany
| | | | - Thomas Skripuletz
- Department of Neurology, Hannover University Medical School, Hannover, Germany
| | | | - Joachim Beige
- Kuratorium for Dialysis and Kidney Transplantation, Neu-Isenburg, Germany
- Martin-Luther-University Halle/Wittenberg, Halle/Saale, Germany
- Hospital Sankt Georg gGmbH, Leipzig, Germany
| |
Collapse
|
3
|
Yao S, Zhang W, Xiao J, Zhang Z, Wang L, Ai H, Wu X, Chen A, Zhuang X. Simultaneous determination of HD56, a novel prodrug, and its active metabolite in cynomolgus monkey plasma using LC-MS/MS for elucidating its pharmacokinetic profile. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1235:124045. [PMID: 38367406 DOI: 10.1016/j.jchromb.2024.124045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
An LC-MS/MS method was developed and validated for the simultaneous determination of the carboxylic acid ester precursor HD56 and the active product HD561 in cynomolgus monkey plasma. Then, the pharmacokinetic characteristics of both compounds following single and multiple i.g. administrations in cynomolgus monkeys were elucidated. In the method, chromatographic separation was achieved with a C18 reversed-phase column and the target quantification was carried out by an electrospray ionization (ESI) source coupled with triple quadrupole mess detector in positive ionization mode with multiple reaction monitoring (MRM) approach. Using the quantification method, the in vitro stability of HD56 in plasma and HD56 pharmacokinetic behavior after i.g. administration in cynomolgus monkey were investigated. It was approved that HD56 did convert into HD561 post-administration. The overall systemic exposure of HD561 post-conversion from HD56 accounted for only about 17% of HD56. After repeated administration at the same dose, there was no significant difference in exposure levels of both HD56 and HD561. However, after multiple dosing, the exposure of HD56 tended to decrease while that of HD561 tended to increase, resulting in a 30% in the exposure ratio. Remarkably, with a carboxylesterase (CES) activity profile akin to humans, the observed in vivo pharmacokinetic profile in cynomolgus monkeys holds promise for predicting HD56/HD561 PK profiles in humans.
Collapse
Affiliation(s)
- Shi Yao
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junhai Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiwei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Lingchao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hengxiao Ai
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xia Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aibing Chen
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China.
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
4
|
Schrader M. Origins, Technological Advancement, and Applications of Peptidomics. Methods Mol Biol 2024; 2758:3-47. [PMID: 38549006 DOI: 10.1007/978-1-0716-3646-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources instead of heading for a few single peptides in former peptide research. Mass spectrometry allows to detect a multitude of peptides in complex mixtures and thus enables new strategies leading to peptidomics. The term was established in the year 2001, and up to now, this new field has grown to over 3000 publications. Analytical techniques originally developed for fast and comprehensive analysis of peptides in proteomics were specifically adjusted for peptidomics. Although it is thus closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. Fundamental technological advancements of peptidomics since have occurred in mass spectrometry and data processing, including quantification, and more slightly in separation technology. Different strategies and diverse sources of peptidomes are mentioned by numerous applications, such as discovery of neuropeptides and other bioactive peptides, including the use of biochemical assays. Furthermore, food and plant peptidomics are introduced similarly. Additionally, applications with a clinical focus are included, comprising biomarker discovery as well as immunopeptidomics. This overview extensively reviews recent methods, strategies, and applications including links to all other chapters of this book.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| |
Collapse
|
5
|
Schrader M, Fricker LD. Current Challenges and Future Directions in Peptidomics. Methods Mol Biol 2024; 2758:485-498. [PMID: 38549031 DOI: 10.1007/978-1-0716-3646-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The field of peptidomics has been under development since its start more than 20 years ago. In this chapter we provide a personal outlook for future directions in this field. The applications of peptidomics technologies are spreading more and more from classical research of peptide hormones and neuropeptides towards commercial applications in plant and food-science. Many clinical applications have been developed to analyze the complexity of biofluids, which are being addressed with new instrumentation, automization, and data processing. Additionally, the newly developed field of immunopeptidomics is showing promise for cancer therapies. In conclusion, peptidomics will continue delivering important information in classical fields like neuropeptides and peptide hormones, benefiting from improvements in state-of-the-art technologies. Moreover, new directions of research such as immunopeptidomics will further complement classical omics technologies and may become routine clinical procedures. Taken together, discoveries of new substances, networks, and applications of peptides can be expected in different disciplines.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| | - Lloyd D Fricker
- Departments of Molecular Pharmacology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
6
|
Ferreira R, Amado F, Vitorino R. Empowering peptidomics: utilizing computational tools and approaches. Bioanalysis 2023; 15:1315-1325. [PMID: 37737150 DOI: 10.4155/bio-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Bioinformatics plays a critical role in the advancement of peptidomics by providing powerful tools for data analysis, interpretation and integration. Peptidomics is concerned with the study of peptides, short chains of amino acids with diverse biological functions. This area includes peptide identification and characterization, database construction, de novo sequencing, functional annotation, omics data integration and systems biology. Artificial intelligence techniques, such as machine learning and natural language processing, aid in the interpretation of peptide sequence data and the generation of biological insights. By using bioinformatics approaches, peptidomics researchers can accelerate peptide discovery, understand their functions and gain insights into complex molecular interactions.
Collapse
Affiliation(s)
- Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Vitorino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Universidade do Porto, Porto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|