1
|
Harris JC, Lee RJ, Carey RM. Extragustatory bitter taste receptors in head and neck health and disease. J Mol Med (Berl) 2024:10.1007/s00109-024-02490-0. [PMID: 39317733 DOI: 10.1007/s00109-024-02490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Taste receptors, first described for their gustatory functions within the oral cavity and oropharynx, are now known to be expressed in many organ systems. Even intraoral taste receptors regulate non-sensory pathways, and recent literature has connected bitter taste receptors to various states of health and disease. These extragustatory pathways involve previously unexplored, clinically relevant roles for taste signaling in areas including susceptibility to infection, antibiotic efficacy, and cancer outcomes. Among other physicians, otolaryngologists who manage head and neck diseases should be aware of this growing body of evidence and its relevance to their fields. In this review, we describe the role of extragustatory taste receptors in head and neck health and disease, highlighting recent advances, clinical implications, and directions for future investigation. Additionally, this review will discuss known TAS2R polymorphisms and the associated implications for clinical prognosis.
Collapse
Affiliation(s)
- Jacob C Harris
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Mao Z, Cheng W, Li Z, Yao M, Sun K. Clinical Associations of Bitter Taste Perception and Bitter Taste Receptor Variants and the Potential for Personalized Healthcare. Pharmgenomics Pers Med 2023; 16:121-132. [PMID: 36819962 PMCID: PMC9936560 DOI: 10.2147/pgpm.s390201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Bitter taste receptors (T2Rs) consist of 25 functional receptors that can be found in various types of cells throughout the human body with responses ranging from detecting bitter taste to suppressing pathogen-induced inflammation upon activation. Numerous studies have observed clinical associations with genetic or phenotypic variants in bitter taste receptors, most notably that of the receptor isoform T2R38. With genetic variants playing a role in the response of the body to bacterial quorum-sensing molecules, bacterial metabolites, medicinal agonists and nutrients, we examine how T2R polymorphisms, expression levels and bitter taste perception can lead to varying clinical associations. From these genetic and phenotypic differences, healthcare management can potentially be individualized through appropriately administering drugs with bitter masking to increase compliance; optimizing nutritional strategies and diets; avoiding the use of T2R agonists if this pathway is already activated from bacterial infections; adjusting drug regimens based on differing prognoses; or adjusting drug regimens based on T2R expression levels in the target cell type and bodily region.
Collapse
Affiliation(s)
- Ziwen Mao
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, People’s Republic of China,Department of Orthopaedic Surgery, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Weyland Cheng
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, People’s Republic of China,Department of Orthopaedic Surgery, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, People’s Republic of China,Correspondence: Weyland Cheng, Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, 33 Longhu Waihuan East Road, Zhengzhou, Henan, People’s Republic of China, Tel +86 18502758200, Email
| | - Zhenwei Li
- Department of Orthopaedic Surgery, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Manye Yao
- Department of Orthopaedic Surgery, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Keming Sun
- Department of Orthopaedic Surgery, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
3
|
Sierra-Vargas MP, Montero-Vargas JM, Debray-García Y, Vizuet-de-Rueda JC, Loaeza-Román A, Terán LM. Oxidative Stress and Air Pollution: Its Impact on Chronic Respiratory Diseases. Int J Mol Sci 2023; 24:853. [PMID: 36614301 PMCID: PMC9821141 DOI: 10.3390/ijms24010853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Redox regulation participates in the control of various aspects of metabolism. Reactive oxygen and nitrogen species participate in many reactions under physiological conditions. When these species overcome the antioxidant defense system, a distressed status emerges, increasing biomolecular damage and leading to functional alterations. Air pollution is one of the exogenous sources of reactive oxygen and nitrogen species. Ambient airborne particulate matter (PM) is important because of its complex composition, which includes transition metals and organic compounds. Once in contact with the lungs' epithelium, PM components initiate the synthesis of inflammatory mediators, macrophage activation, modulation of gene expression, and the activation of transcription factors, which are all related to the physiopathology of chronic respiratory diseases, including cancer. Even though the pathophysiological pathways that give rise to the development of distress and biological damage are not fully understood, scientific evidence indicates that redox-dependent signaling pathways are involved. This article presents an overview of the redox interaction of air pollution inside the human body and the courses related to chronic respiratory diseases.
Collapse
Affiliation(s)
- Martha Patricia Sierra-Vargas
- Departmento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México 14080, Mexico
| | - Josaphat Miguel Montero-Vargas
- Departmento de Investigación en Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México 14080, Mexico
| | - Yazmín Debray-García
- Departmento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México 14080, Mexico
| | - Juan Carlos Vizuet-de-Rueda
- Departmento de Investigación en Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México 14080, Mexico
| | - Alejandra Loaeza-Román
- Departmento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México 14080, Mexico
| | - Luis M. Terán
- Departmento de Investigación en Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México 14080, Mexico
| |
Collapse
|
4
|
Ki SY, Jeong YT. Taste Receptors beyond Taste Buds. Int J Mol Sci 2022; 23:ijms23179677. [PMID: 36077074 PMCID: PMC9455917 DOI: 10.3390/ijms23179677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Taste receptors are responsible for detecting their ligands not only in taste receptor cells (TRCs) but also in non-gustatory organs. For several decades, many research groups have accumulated evidence for such “ectopic” expression of taste receptors. More recently, some of the physiologic functions (apart from taste) of these ectopic taste receptors have been identified. Here, we summarize our current understanding of these ectopic taste receptors across multiple organs. With a particular focus on the specialized epithelial cells called tuft cells, which are now considered siblings of type II TRCs, we divide the ectopic expression of taste receptors into two categories: taste receptors in TRC-like cells outside taste buds and taste receptors with surprising ectopic expression in completely different cell types.
Collapse
Affiliation(s)
- Su Young Ki
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Yong Taek Jeong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-2286-1295
| |
Collapse
|