1
|
Timoshenko O, Kugaevskaya E, Gureeva T, Morozevich G, Lupatov A, Mekhtiev A, Rudovich A, Zhabinskii V, Khripach V, Lisitsa A. Isoxazolyl steroid blocks the Shh signaling pathway and the expression of MMP-2 and MMP-9 in cervical carcinoma cell lines. Steroids 2025; 217:109599. [PMID: 40101884 DOI: 10.1016/j.steroids.2025.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Cervical cancer is the fourth leading cause of cancer death among women worldwide. Matrix metalloproteinases MMP-2 and MMP-9 play a leading role in the processes of invasion and metastasis in cervical cancer. Research on the development of MMP inhibitors not yielded the expected results due to their serious side effects. Study of signaling pathways involved in regulation of MMPs expression is of great importance for search of new classes of therapeutic drugs. Aberrant activation of the Sonic Hedgehog (Shh) signaling pathway is associated with increased MMPs in many types of human cancer. This study investigated the inhibitory action of 17β-((3-butylisoxazol-5-yl)methyl)-androst-5-en-3β-ol on the Shh signaling pathway key genes (Ptch, Smo, Gli) expression and MMP-2, MMP-9 genes expression in human cervical carcinoma cell lines (SiHa and CaSki) and keratinocytes (HaCaT). Cyclopamine was used for comparative analysis. Gene expression analysis was performed using real-time PCR; the effects on survival and cell cycle were studied using the MTT test and flow cytometry method. 17β-((3-butylisoxazol-5-yl)methyl)-androst-5-en-3β-ol had higher cytotoxicity and more effectively blocked the Shh signaling pathway genes and MMP-2 and MMP-9 genes compared to cyclopamine in all cell lines. The results obtained demonstrate potential of 17β-((3-butylisoxazol-5-yl)methyl)-androst-5-en-3β-ol as the anticancer drug that simultaneously block the Shh signaling pathway and MMP expression. We are confident that the search for substances capable of simultaneously affecting several key components involved in tumor progression is of great importance for the creation of next-generation therapeutic agents.
Collapse
Affiliation(s)
- Olga Timoshenko
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia.
| | - Elena Kugaevskaya
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| | - Tatiana Gureeva
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| | - Galina Morozevich
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| | - Alexey Lupatov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| | - Arif Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| | - Anton Rudovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220084 Minsk, Belarus
| | - Vladimir Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220084 Minsk, Belarus
| | - Vladimir Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220084 Minsk, Belarus
| | - Andrey Lisitsa
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia
| |
Collapse
|
2
|
Srivastava A, Vinod PK. A single-cell network approach to decode metabolic regulation in gynecologic and breast cancers. NPJ Syst Biol Appl 2025; 11:26. [PMID: 40082472 PMCID: PMC11906788 DOI: 10.1038/s41540-025-00506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Cancer metabolism is characterized by significant heterogeneity, presenting challenges for treatment efficacy and patient outcomes. Understanding this heterogeneity and its regulatory mechanisms at single-cell resolution is crucial for developing personalized therapeutic strategies. In this study, we employed a single-cell network approach to characterize malignant heterogeneity in gynecologic and breast cancers, focusing on the transcriptional regulatory mechanisms driving metabolic alterations. By leveraging single-cell RNA sequencing (scRNA-seq) data, we assessed the metabolic pathway activities and inferred cancer-specific protein-protein interactomes (PPI) and gene regulatory networks (GRNs). We explored the crosstalk between these networks to identify key alterations in metabolic regulation. Clustering cells by metabolic pathways revealed tumor heterogeneity across cancers, highlighting variations in oxidative phosphorylation, glycolysis, cholesterol, fatty acid, hormone, amino acid, and redox metabolism. Our analysis identified metabolic modules associated with these pathways, along with their key transcriptional regulators. These findings provide insights into the complex interplay between metabolic rewiring and transcriptional regulation in gynecologic and breast cancers, paving the way for potential targeted therapeutic strategies in precision oncology. Furthermore, this pipeline for dissecting coregulatory metabolic networks can be broadly applied to decipher metabolic regulation in any disease at single-cell resolution.
Collapse
Affiliation(s)
- Akansha Srivastava
- Centre for Computational Natural Sciences and Bioinformatics, IIIT, Hyderabad, India
| | - P K Vinod
- Centre for Computational Natural Sciences and Bioinformatics, IIIT, Hyderabad, India.
| |
Collapse
|
3
|
Gupta J, Almulla AF, Jalil AT, Jasim NY, Aminov Z, Alsaikhan F, Ramaiah P, Chinnasamy L, Jawhar ZH. Melatonin in Chemo/Radiation Therapy; Implications for Normal Tissues Sparing and Tumor Suppression: An Updated Review. Curr Med Chem 2025; 32:511-538. [PMID: 37916636 DOI: 10.2174/0109298673262122231011172100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 11/03/2023]
Abstract
Resistance to therapy and the toxicity of normal tissue are the major problems for efficacy associated with chemotherapy and radiotherapy. Drug resistance is responsible for most cases of mortality associated with cancer. Furthermore, their side effects can decrease the quality of life for surviving patients. An enhancement in the tumor response to therapy and alleviation of toxic effects remain unsolved challenges. One of the interesting topics is the administration of agents with low toxicity to protect normal tissues and/or sensitize cancers to chemo/radiotherapy. Melatonin is a natural body hormone that is known as a multitasking molecule. Although it has antioxidant properties, a large number of experiments have uncovered interesting effects of melatonin that can increase the therapeutic efficacy of chemo/radiation therapy. Melatonin can enhance anticancer therapy efficacy through various mechanisms, cells such as the immune system, and modulation of cell cycle and death pathways, tumor suppressor genes, and also through suppression of some drug resistance mediators. However, melatonin may protect normal tissues through the suppression of inflammation, fibrosis, and massive oxidative stress in normal cells and tissues. In this review, we will discuss the distinct effects of melatonin on both tumors and normal tissues. We review how melatonin may enhance radio/chemosensitivity of tumors while protecting normal tissues such as the lung, heart, gastrointestinal system, reproductive system, brain, liver, and kidney.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | | | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
4
|
Aleksandrova A, Mekhtiev A, Timoshenko O, Kugaevskaya E, Gureeva T, Gisina A, Zavialova M, Scherbakov K, Rudovich A, Zhabinskii V, Khripach V. Effects of Isoxazolyl Steroids on Key Genes of Sonic Hedgehog Cascade Expression in Tumor Cells. Molecules 2024; 29:4026. [PMID: 39274874 PMCID: PMC11396458 DOI: 10.3390/molecules29174026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024] Open
Abstract
Activation of the Hedgehog (Hh) signaling pathway is often associated with the progression of various types of cancer. The purpose of study was to search for inhibitors of the Hh signaling pathway among eight compounds belonging to the group of isoxazolyl steroids. The evaluation of the effectiveness of the compounds was based on the analysis of their cytotoxicity, effect on the cell cycle, on the expression of key Hh-signaling-pathway genes (Ptch1, Smo, and Gli1) and putative target genes MMP-2 and MMP-9. Four compounds with the most pronounced cytotoxic effect were identified: compounds 1, 2 (HeLa cells) and 3, 4 (A549 cells). Compounds 1 and 2 significantly reduced the expression of the Ptch1, Smo, Gli1 genes, but had the opposite effect on MMP-2 gene expression: Compound 1 increased it, and compound 2 decreased it. Compounds 3 and 4 did not have a noticeable inhibitory effect on the expression of the Shh pathway receptors, but significantly inhibited MMP-2 and MMP-9 expression. Thus, it was shown that inhibition of the Shh signaling pathway by isoxazolyl steroids can have the opposite effect on MMPs gene expression, which is what should be taken into account in further studies of these compounds as therapeutic agents.
Collapse
Affiliation(s)
- Anna Aleksandrova
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia; (A.A.); (O.T.); (E.K.); (T.G.); (A.G.); (M.Z.); (K.S.)
| | - Arif Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia; (A.A.); (O.T.); (E.K.); (T.G.); (A.G.); (M.Z.); (K.S.)
| | - Olga Timoshenko
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia; (A.A.); (O.T.); (E.K.); (T.G.); (A.G.); (M.Z.); (K.S.)
| | - Elena Kugaevskaya
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia; (A.A.); (O.T.); (E.K.); (T.G.); (A.G.); (M.Z.); (K.S.)
| | - Tatiana Gureeva
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia; (A.A.); (O.T.); (E.K.); (T.G.); (A.G.); (M.Z.); (K.S.)
| | - Alisa Gisina
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia; (A.A.); (O.T.); (E.K.); (T.G.); (A.G.); (M.Z.); (K.S.)
| | - Maria Zavialova
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia; (A.A.); (O.T.); (E.K.); (T.G.); (A.G.); (M.Z.); (K.S.)
| | - Kirill Scherbakov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., 119121 Moscow, Russia; (A.A.); (O.T.); (E.K.); (T.G.); (A.G.); (M.Z.); (K.S.)
| | - Anton Rudovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220084 Minsk, Belarus; (A.R.); (V.Z.); (V.K.)
| | - Vladimir Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220084 Minsk, Belarus; (A.R.); (V.Z.); (V.K.)
| | - Vladimir Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220084 Minsk, Belarus; (A.R.); (V.Z.); (V.K.)
| |
Collapse
|
5
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
6
|
Zhao B, Wang Z, Liu D, Zhang S. Genetically predicted serum testosterone and risk of gynecological disorders: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1161356. [PMID: 38075074 PMCID: PMC10710168 DOI: 10.3389/fendo.2023.1161356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Background Testosterone plays a key role in women, but the associations of serum testosterone level with gynecological disorders risk are inconclusive in observational studies. Methods We leveraged public genome-wide association studies to analyze the effects of four testosterone related exposure factors on nine gynecological diseases. Causal estimates were calculated by inverse variance-weighted (IVW), MR-Egger and weighted median methods. The heterogeneity test was performed on the obtained data through Cochrane's Q value, and the horizontal pleiotropy test was performed on the data through MR-Egger intercept and MR-PRESSO methods. "mRnd" online analysis tool was used to evaluate the statistical power of MR estimates. Results The results showed that total testosterone and bioavailable testosterone were protective factors for ovarian cancer (odds ratio (OR) = 0.885, P = 0.012; OR = 0.871, P = 0.005) and endometriosis (OR = 0.805, P = 0.020; OR = 0.842, P = 0.028) but were risk factors for endometrial cancer (OR = 1.549, P < 0.001; OR = 1.499, P < 0.001) and polycystic ovary syndrome (PCOS) (OR = 1.606, P = 0.019; OR = 1.637, P = 0.017). dehydroepiandrosterone sulfate (DHEAS) is a protective factor against endometriosis (OR = 0.840, P = 0.016) and premature ovarian failure (POF) (OR = 0.461, P = 0.046) and a risk factor for endometrial cancer (OR= 1.788, P < 0.001) and PCOS (OR= 1.970, P = 0.014). sex hormone-binding globulin (SHBG) is a protective factor against endometrial cancer (OR = 0.823, P < 0.001) and PCOS (OR = 0.715, P = 0.031). Conclusion Our analysis suggested causal associations between serum testosterone level and ovarian cancer, endometrial cancer, endometriosis, PCOS, POF.
Collapse
Affiliation(s)
| | | | | | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Anbarasu S, Anbarasu A. Cancer-biomarkers associated with sex hormone receptors and recent therapeutic advancements: a comprehensive review. Med Oncol 2023; 40:171. [PMID: 37162589 DOI: 10.1007/s12032-023-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Hormones and its regulation plays vital role in causing breast, prostate, ovarian and endometrial cancers collectively known as hormone-sensitive cancers. This review discusses the various functions of the sex hormones and the biological pathways involved in causing hormone-associated cancer under differential regulation. We have also attempted to explore the biomarkers associated with the cancers and the current therapeutic availability to treat such cancers. Among various sex hormones such as estrogen, progesterone and androgen, estrogen the female sex hormone and its receptor had a major contribution in causing cancer and hence are considered a predominant target in treating the associated cancers. Other hormones and receptors such a androgen, progesterone, and their respective receptors were also reported to have a significant correlation in causing cancers. Apart from these receptors certain enzymes that act as precursors or as promoters are also targeted for treatment strategies. The drugs commonly used belong to the selective drug classes such as selective estrogen receptor modulators and selective progesterone receptor modulators. In the case of androgen regulation androgen deprivation therapies are practiced. It is also suggested that the use of natural substances to treat cancer could prevent resistance and reduce side effects. Identification of significant targets and the discovery of many efficient drugs shall be possible in the future with better understanding of hormone regulation and its influence on cancer causative mechanisms.
Collapse
Affiliation(s)
- Suvitha Anbarasu
- Medical and Biological Computing Laboratory, Department of Biotechnology, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, Department of Biotechnology, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
What Role do Androgens Play in Endometrial Cancer? J Pers Med 2023; 13:jpm13020341. [PMID: 36836575 PMCID: PMC9960114 DOI: 10.3390/jpm13020341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The role of estrogens and progesterone in the development and progression of endometrial cancer is well-established, but there are very little data about the role of androgens. There are five different androgens produced in women: dehydroepiandrosterone sulphate (DHEAS), dehydroepiandrosterone (DHEA), androstenedione (A4), testosterone (T) and dihydrotestosterone (DHT). The most potent hormones are T and DHT, the latter being mainly produced from T in peripheral tissues, including endometrium. Although they are considered to exert antiproliferative effects in many settings and the expression of their receptors is more often associated with a good prognosis in EC, it is still unknown in which specific settings androgens have carcinogenic or protective effects in EC.
Collapse
|
9
|
Development and Validation of a Liquid-Liquid Phase Separation-Related Gene Signature as Prognostic Biomarker for Low-Grade Gliomas. DISEASE MARKERS 2022; 2022:1487165. [PMID: 36193491 PMCID: PMC9525737 DOI: 10.1155/2022/1487165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
Aim To explore whether the liquid-liquid phase separation- (LLPS-) related genes were potential prognostic markers that could contribute to the further classification of low-grade gliomas (LGGs). Methods The LLPS-related genes were subjected to functional enrichment analysis. The univariable, least absolute shrinkage and selection operator, and multivariable stepwise Cox regression analyses were performed to develop an LLPS-related gene signature (GS) in the discovery data set. The biological characteristics of the high-risk LGG were explored using gene set enrichment analysis. Two independent external data sets were used to validate the LLPS-related GS. Results LLPS-related genes are involved in multiple important cancer-related biological processes and pathways in LGG. Nine LLPS-related genes were identified to construct the LLPS-related GS, which was significantly associated with the prognosis of LGG patients. The LLPS-related GS could successfully divide patients with LGG into high- and low-risk groups, and the high-risk group showed a poorer prognosis than the low-risk group. Furthermore, the LLPS-related GS was independent of IDH and 1p19q status. Several cancer-related pathways may be more active in high-risk LGGs, such as IL6 JAK STAT3 signaling pathway. The LLPS-related GS was successfully validated with two independent external data sets. Conclusion We developed and validated a novel LLPS-related GS for risk stratification of LGG. Our findings may provide more precise management for LGGs and a useful reference for LLPS mechanism to link LGG studies.
Collapse
|