1
|
Pan Z, Zhang L, Hu J. miR-137 regulates autophagy and apoptosis in duodenal ulcer by targeting BNIP3L. Medicine (Baltimore) 2024; 103:e40568. [PMID: 39654242 PMCID: PMC11630971 DOI: 10.1097/md.0000000000040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Duodenal ulcer (DU) represents a clinical manifestation and disease state that occurs when the mucosal surface of the duodenum is damaged. The processes of autophagy and apoptosis have been linked to the development of DU, yet the precise roles they play remain unclear. This study aimed to investigate the expression and mechanism of action of microRNAs (miRNA)-137 (miR-137) in DU. METHODS Dysregulated miRNAs and targeted genes were identified from the Gene Expression Omnibus database, and the immune cell infiltration levels were analyzed using CIBERSORT. To confirm the targeting of the miRNAs, we conducted dual luciferase reporter assays in vitro. The detection of cell apoptosis was conducted using flow cytometry. Moreover, quantitative reverse transcription polymerase chain reaction, cell counting kit-8, and Western blot were employed to ascertain the levels of autophagy- and apoptosis-related proteins. RESULTS Bioinformatics analysis identified 5 miRNAs, with miR-137 showing the most pronounced dysregulation. Its target gene, BNIP3L, was subsequently identified. In vitro experiments confirmed that miR-137 targeted BNIP3L. The upregulation of miR-137 expression in HIEC-6 cells resulted in the inhibition of BNIP3L expression, a reduction in autophagy, and an increase in apoptosis. A reduction in the expression of miR-137 would have the opposite effect. CONCLUSIONS miR-137 is upregulated in DU patients and contributes to ulcer progression by inhibiting BNIP3L, reducing autophagy, and promoting apoptosis. Targeting miR-137 could provide a novel therapeutic strategy for DU management.
Collapse
Affiliation(s)
- Zhaohui Pan
- Department of Gastroenterology, Shijiazhuang People’s Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li Zhang
- Department of Gastroenterology, Shijiazhuang People’s Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Hu
- Department of Gastroenterology, Shijiazhuang People’s Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Pădureanu V, Dop D, Caragea DC, Rădulescu D, Pădureanu R, Forțofoiu MC. Cardiovascular and Neurological Diseases and Association with Helicobacter Pylori Infection-An Overview. Diagnostics (Basel) 2024; 14:1781. [PMID: 39202269 PMCID: PMC11353373 DOI: 10.3390/diagnostics14161781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
This article investigates the link between Helicobacter pylori (H. pylori) infection and cardiovascular and neurological disorders. Recent research suggests that H. pylori may play a role in cardiovascular diseases like atherosclerosis, myocardial infarction, and stroke, as well as neurological diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Cardiovascular Diseases: H. pylori induces endothelial dysfunction and chronic inflammation, promoting atherosclerotic plaque formation and other cardiac complications. High infection prevalence in cardiovascular patients implies that systemic inflammation from H. pylori accelerates disease progression. Eradication therapies combined with anti-inflammatory and lipid-lowering treatments may reduce cardiovascular risk. Neurological Diseases: H. pylori may contribute to Alzheimer's, multiple sclerosis, and Parkinson's through systemic inflammation, neuroinflammation, and autoimmune responses. Increased infection prevalence in these patients suggests bacterial involvement in disease pathogenesis. The eradication of H. pylori could reduce neuroinflammation and improve outcomes. Discussions and Future Research: Managing H. pylori infection in clinical practice could impact public health and treatment approaches. Further research is needed to clarify these relationships. Longitudinal and mechanistic studies are essential to fully understand H. pylori's role in these conditions. Conclusions: H. pylori infection is a potential risk factor for various cardiovascular and neurological conditions. Additional research is critical for developing effective prevention and treatment strategies. Targeted therapies, including H. pylori eradication combined with anti-inflammatory treatments, could improve clinical outcomes. These findings highlight the need for an integrated clinical approach to include H. pylori evaluation and treatment.
Collapse
Affiliation(s)
- Vlad Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| | - Dalia Dop
- Department of Pediatrics, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Daniel Cosmin Caragea
- Department of Nephrology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Dumitru Rădulescu
- Department of Surgery, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Rodica Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| | - Mircea-Cătălin Forțofoiu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| |
Collapse
|
3
|
He Y, Zhang X, Zhang X, Fu B, Xing J, Fu R, Lv J, Guo M, Huo X, Liu X, Lu J, Cao L, Du X, Ge Z, Chen Z, Lu X, Li C. Hypoxia exacerbates the malignant transformation of gastric epithelial cells induced by long-term H. pylori infection. Microbiol Spectr 2024; 12:e0031124. [PMID: 38916312 PMCID: PMC11302036 DOI: 10.1128/spectrum.00311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Helicobacter pylori is a microaerophilic Gram-negative bacterium that resides in the human stomach and is classified as a class I carcinogen for gastric cancer. Numerous studies have demonstrated that H. pylori infection plays a role in regulating the function of host cells, thereby contributing to the malignant transformation of these cells. However, H. pylori infection is a chronic process, and short-term cellular experiments may not provide a comprehensive understanding of the in vivo situation, especially when considering the lower oxygen levels in the human stomach. In this study, we aimed to investigate the mechanisms underlying gastric cell dysfunction after prolonged exposure to H. pylori under hypoxic conditions. We conducted a co-culture experiment using the gastric cell line GES-1 and H. pylori for 30 generations under intermittent hypoxic conditions. By closely monitoring cell proliferation, migration, invasion, autophagy, and apoptosis, we revealed that sustained H. pylori stimulation under hypoxic conditions significantly influences the function of GES-1 cells. This stimulation induces epithelial-mesenchymal transition and contributes to the propensity for malignant transformation of gastric cells. To confirm the in vitro results, we conducted an experiment involving Mongolian gerbils infected with H. pylori for 85 weeks. All the results strongly suggest that the Nod1 receptor signaling pathway plays a crucial role in H. pylori-related apoptosis and autophagy. In summary, continuous stimulation by H. pylori affects the functioning of gastric cells through the Nod1 receptor signaling pathway, increasing the likelihood of cell carcinogenesis. The presence of hypoxic conditions further exacerbates this process.IMPORTANCEDeciphering the collaborative effects of Helicobacter pylori infection on gastric epithelial cell function is key to unraveling the development mechanisms of gastric cancer. Prior research has solely examined the outcomes of short-term H. pylori stimulation on gastric epithelial cells under aerobic conditions, neglecting the bacterium's nature as a microaerophilic organism that leads to cancer following prolonged stomach colonization. This study mimics a more genuine in vivo infection scenario by repeatedly exposing gastric epithelial cells to H. pylori under hypoxic conditions for up to 30 generations. The results show that chronic exposure to H. pylori in hypoxia substantially increases cell migration, invasion, and epithelial-mesenchymal transition, while suppressing autophagy and apoptosis. This highlights the significance of hypoxic conditions in intensifying the carcinogenic impact of H. pylori infection. By accurately replicating the in vivo gastric environment, this study enhances our comprehension of H. pylori's pathogenic mechanisms in gastric cancer.
Collapse
Affiliation(s)
- Yang He
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- School of Nursing, Dalian Medical University, Dalian, China
| | - Xiulin Zhang
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolu Zhang
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Bo Fu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyi Lv
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Meng Guo
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xueyun Huo
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xin Liu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jing Lu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Lixue Cao
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xiaoyan Du
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhenwen Chen
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changlong Li
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Zhou G, Zhang L, Shao S. The application of MARCO for immune regulation and treatment. Mol Biol Rep 2024; 51:246. [PMID: 38300385 DOI: 10.1007/s11033-023-09201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Macrophage receptor with collagen structure (MARCO) is a member of scavenger receptor class A (SR-A) and shares structural and functional similarities with SR-A1. In recent years, many studies have shown that MARCO can trigger an immune response and has therapeutic potential as a target for immunotherapy. Studies have shown that alterations in MARCO expression following pathogen infection cause changes in the functions of innate and adaptive immune cells, including macrophages, dendritic cells, B cells, and T cells, affecting the body's immune response to invading pathogens; thus, MARCO plays a crucial role in triggering the immune response, bridging innate and adaptive immunity, and eliminating pathogens. This paper is a comprehensive summary of the recent research on MARCO. This review focuses on the multiple functions of MARCO, including adhesion, migration, phagocytosis, and cytokine secretion with special emphasis on the complex interactions between MARCO and various types of cells involved in the immune response, as well as possible immune-related mechanisms. In summary, in this review, we discuss the structure and function of MARCO and its role in the immune response and highlight the therapeutic potential of MARCO as a target for immunotherapy. We hope that this review provides a theoretical basis for future research on MARCO.
Collapse
Affiliation(s)
- Guiyuan Zhou
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China
| | - Lei Zhang
- Shijiazhuang Vocational College of City Economy, No. 12, Wenming Road, Economic and Technological Development Zone, Shijiazhuang, 050017, China.
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China.
| |
Collapse
|
6
|
Peng R, Zhang Z, Qu Y, Chen W. The impact of Helicobacter pylori eradication with vonoprazan-amoxicillin dual therapy combined with probiotics on oral microbiota: a randomized double-blind placebo-controlled trial. Front Microbiol 2023; 14:1273709. [PMID: 37849923 PMCID: PMC10577438 DOI: 10.3389/fmicb.2023.1273709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Background Helicobacter pylori infection and eradication have been reported to cause dysbiosis of the oral microbiota. Probiotics are increasingly being used to maintain the balance of the oral microbiota. We aimed to investigate the effects of H. pylori infection, H. pylori eradication with vonoprazan-amoxicillin dual therapy, and probiotics supplementation on the oral microbiota. Methods H. pylori positive patients were randomly assigned to a vonoprazan-amoxicillin regimen plus probiotics (BtT group) or the placebo (PT group) for 14 days. H. pylori negative population served as normal controls. Tongue coating samples were collected from 60 H. pylori positive patients at three time points (before H. pylori eradication, after H. pylori eradication, and at confirmation of H. pylori infection cure) and 20 H. pylori negative subjects. 16S rRNA gene sequencing was used to analyze the oral microbiota. Results H. pylori was detected in the oral cavity in positive (34/60), negative (7/20), and eradicated (1/60) subjects using high-throughput sequencing. Compared with normal controls, H. pylori positive patients exhibited higher richness (p = 0.012) and comparable diversity (p = 0.075) of oral microbiota. Beta diversity and KEGG analysis showed oral flora composition and function differences in H. pylori positive and negative subjects. Alpha diversity dramatically decreased after H. pylori eradication and modestly increased with confirmation of H. pylori eradication. Beta diversity and LEfSe analysis revealed distinct structures, and KEGG analysis showed distinct signaling pathways of tongue coating flora at three time points. There was a significant reduction of Firmicutes and Lactobacillus after H. pylori erdication. The PT group and BtT group had identical compositional and functional differences of oral microbiota at three time points. Conclusion No substantial link existed between oral and stomach H. pylori, while removing gastric H. pylori helped eliminate oral H. pylori. H. pylori infection and vonoprazan-amoxicillin dual therapy affected oral microbiota diversity, structure, and function. H. pylori eradication demonstrated a suppressive impact on the proliferation of oral pathogens, specifically Firmicutes and Lactobacillus. Nevertheless, probiotics supplementation did not reduce the oral microbial disturbance caused by H. pylori eradication. Clinical trial registration https://www.chictr.org.cn/, identifiers CHICTR2200060023.
Collapse
Affiliation(s)
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | | |
Collapse
|
7
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
8
|
Urbaniak MM, Rudnicka K, Gościniak G, Chmiela M. Can Pyomelanin Produced by Pseudomonas aeruginosa Promote the Regeneration of Gastric Epithelial Cells and Enhance Helicobacter pylori Phagocytosis? Int J Mol Sci 2023; 24:13911. [PMID: 37762213 PMCID: PMC10530801 DOI: 10.3390/ijms241813911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is the most common cause of chronic gastritis, peptic ulcers and gastric cancer. Successful colonization of the stomach by H. pylori is related to the complex interactions of these bacteria and its components with host cells. The growing antibiotic resistance of H. pylori and various mechanisms of evading the immune response have forced the search for new biologically active substances that exhibit antibacterial properties and limit the harmful effects of these bacteria on gastric epithelial cells and immune cells. In this study, the usefulness of pyomelanin (PyoM) produced by Pseudomonas aeruginosa for inhibiting the metabolic activity of H. pylori was evaluated using the resazurin reduction assay, as well as in vitro cell studies used to verify the cytoprotective, anti-apoptotic and pro-regenerative effects of PyoM in the H. pylori LPS environment. We have shown that both water-soluble (PyoMsol) and water-insoluble (PyoMinsol) PyoM exhibit similar antibacterial properties against selected reference and clinical strains of H. pylori. This study showed that PyoM at a 1 μg/mL concentration reduced H. pylori-driven apoptosis and reactive oxygen species (ROS) production in fibroblasts, monocytes or gastric epithelial cells. In addition, PyoM enhanced the phagocytosis of H. pylori. PyoMsol showed better pro-regenerative and immunomodulatory activities than PyoMinsol.
Collapse
Affiliation(s)
- Mateusz M. Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 50-368 Wrocław, Poland;
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
| |
Collapse
|
9
|
Sah DK, Arjunan A, Lee B, Jung YD. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants (Basel) 2023; 12:1712. [PMID: 37760015 PMCID: PMC10525271 DOI: 10.3390/antiox12091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and makes up a significant component of the global cancer burden. Helicobacter pylori (H. pylori) is the most influential risk factor for GC, with the International Agency for Research on Cancer classifying it as a Class I carcinogen for GC. H. pylori has been shown to persist in stomach acid for decades, causing damage to the stomach's mucosal lining, altering gastric hormone release patterns, and potentially altering gastric function. Epidemiological studies have shown that eliminating H. pylori reduces metachronous cancer. Evidence shows that various molecular alterations are present in gastric cancer and precancerous lesions associated with an H. pylori infection. However, although H. pylori can cause oxidative stress-induced gastric cancer, with antioxidants potentially being a treatment for GC, the exact mechanism underlying GC etiology is not fully understood. This review provides an overview of recent research exploring the pathophysiology of H. pylori-induced oxidative stress that can cause cancer and the antioxidant supplements that can reduce or even eliminate GC occurrence.
Collapse
Affiliation(s)
| | | | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| |
Collapse
|
10
|
Kashyap D, Rele S, Bagde PH, Saini V, Chatterjee D, Jain AK, Pandey RK, Jha HC. Comprehensive insight into altered host cell-signaling cascades upon Helicobacter pylori and Epstein-Barr virus infections in cancer. Arch Microbiol 2023; 205:262. [PMID: 37310490 DOI: 10.1007/s00203-023-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Cancer is characterized by mutagenic events that lead to disrupted cell signaling and cellular functions. It is one of the leading causes of death worldwide. Literature suggests that pathogens, mainly Helicobacter pylori and Epstein-Barr virus (EBV), have been associated with the etiology of human cancer. Notably, their co-infection may lead to gastric cancer. Pathogen-mediated DNA damage could be the first and crucial step in the carcinogenesis process that modulates numerous cellular signaling pathways. Altogether, it dysregulates the metabolic pathways linked with cell growth, apoptosis, and DNA repair. Modulation in these pathways leads to abnormal growth and proliferation. Several signaling pathways such RTK, RAS/MAPK, PI3K/Akt, NFκB, JAK/STAT, HIF1α, and Wnt/β-catenin are known to be altered in cancer. Therefore, this review focuses on the oncogenic roles of H. pylori, EBV, and its associated signaling cascades in various cancers. Scrutinizing these signaling pathways is crucial and may provide new insights and targets for preventing and treating H. pylori and EBV-associated cancers.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Pranit Hemant Bagde
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | | | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Solna, Sweden
| | - Hem Chandra Jha
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
- Centre for Rural Development and Technology, Indian Institute of Technology Indore, Madhya Pradesh, 453552, Indore, India.
| |
Collapse
|
11
|
Fuchs S, Gong R, Gerhard M, Mejías-Luque R. Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases. Curr Top Microbiol Immunol 2023; 444:83-115. [PMID: 38231216 DOI: 10.1007/978-3-031-47331-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori is a prevalent pathogen, which affects more than 40% of the global population. It colonizes the human stomach and persists in its host for several decades or even a lifetime, if left untreated. The persistent infection has been linked to various gastric diseases, including gastritis, peptic ulcers, and an increased risk for gastric cancer. H. pylori infection triggers a strong immune response directed against the bacterium associated with the infiltration of innate phagocytotic immune cells and the induction of a Th1/Th17 response. Even though certain immune cells seem to be capable of controlling the infection, the host is unable to eliminate the bacteria as H. pylori has developed remarkable immune evasion strategies. The bacterium avoids its killing through innate recognition mechanisms and manipulates gastric epithelial cells and immune cells to support its persistence. This chapter focuses on the innate and adaptive immune response induced by H. pylori infection, and immune evasion strategies employed by the bacterium to enable persistent infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Ruolan Gong
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany.
| |
Collapse
|
12
|
Zhang L, Chen X, Ren B, Zhou X, Cheng L. Helicobacter pylori in the Oral Cavity: Current Evidence and Potential Survival Strategies. Int J Mol Sci 2022; 23:ijms232113646. [PMID: 36362445 PMCID: PMC9657019 DOI: 10.3390/ijms232113646] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is transmitted primarily through the oral–oral route and fecal–oral route. The oral cavity had therefore been hypothesized as an extragastric reservoir of H. pylori, owing to the presence of H. pylori DNA and particular antigens in distinct niches of the oral cavity. This bacterium in the oral cavity may contribute to the progression of periodontitis and is associated with a variety of oral diseases, gastric eradication failure, and reinfection. However, the conditions in the oral cavity do not appear to be ideal for H. pylori survival, and little is known about its biological function in the oral cavity. It is critical to clarify the survival strategies of H. pylori to better comprehend the role and function of this bacterium in the oral cavity. In this review, we attempt to analyze the evidence indicating the existence of living oral H. pylori, as well as potential survival strategies, including the formation of a favorable microenvironment, the interaction between H. pylori and oral microorganisms, and the transition to a non-growing state. Further research on oral H. pylori is necessary to develop improved therapies for the prevention and treatment of H. pylori infection.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
13
|
Helicobacter pylori Infection Elicits Type I Interferon Response in Human Monocytes via Toll-Like Receptor 8 Signaling. J Immunol Res 2022; 2022:3861518. [PMID: 36317079 PMCID: PMC9617731 DOI: 10.1155/2022/3861518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
Helicobacter pylori colonization and persistence could precede gastric adenocarcinoma. Elucidating immune recognition strategies of H. pylori is therefore imperative to curb chronic persistence in the human host. Toll-like receptor 7 (TLR7) and TLR8 are widely known as viral single-stranded RNA (ssRNA) sensors yet less studied in the bacteria context. Here, we investigated the involvement of these receptors in the immunity to H. pylori. Human THP-1 monocytic cells were infected with H. pylori, and the expression levels of human Toll-like receptors (TLRs) were examined. The roles of TLR7 and TLR8 in response to H. pylori infection were further investigated using receptor antagonists. Among all TLR transcripts examined, TLR8 exhibited the most prominent upregulation, followed by TLR7 in the THP-1 cells infected with H. pylori J99 or SS1 strains. H. pylori infection-mediated IFN-α and IFN-β transactivation was significantly abrogated by the TLR7/8 (but not TLR7) antagonist. Additionally, TLR7/8 antagonist treatment reduced H. pylori infection-mediated phosphorylation of interferon regulatory factor 7 (IRF7). Our study suggests a novel role of TLR8 signaling in host immunity against H. pylori through sensing live bacteria to elicit the production of type I interferon.
Collapse
|