1
|
Andrade-Talavera Y, Sánchez-Gómez J, Coatl-Cuaya H, Rodríguez-Moreno A. Developmental Spike Timing-Dependent Long-Term Depression Requires Astrocyte d-Serine at L2/3-L2/3 Synapses of the Mouse Somatosensory Cortex. J Neurosci 2024; 44:e0805242024. [PMID: 39406518 PMCID: PMC11604139 DOI: 10.1523/jneurosci.0805-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 11/29/2024] Open
Abstract
Spike timing-dependent plasticity (STDP) is a learning rule important for synaptic refinement and for learning and memory during development. While different forms of presynaptic t-LTD have been deeply investigated, little is known about the mechanisms of somatosensory cortex postsynaptic t-LTD. In the present work, we investigated the requirements and mechanisms for induction of developmental spike timing-dependent long-term depression (t-LTD) at L2/3-L2/3 synapses in the juvenile mouse somatosensory cortex. We found that postnatal day (P) 13-21 mice of either sex show t-LTD at L2/3-L2/3 synapses induced by pairing single presynaptic activity with single postsynaptic action potentials at low stimulation frequency (0.2 Hz) that is expressed postsynaptically and requires the activation of ionotropic postsynaptic NMDA-type glutamate receptors containing GluN2B subunits. In addition, it requires postsynaptic Ca2+, Ca2+ release from internal stores, calcineurin, postsynaptic endocannabinoid synthesis, activation of CB1 receptors, and astrocytic signaling to release the gliotransmitter d-serine to activate postsynaptic NMDARs to induce t-LTD. These results show direct evidence of the mechanism involved in developmental postsynaptic t-LTD at L2/3-L2/3 synapses, revealing a central role of astrocytes and their release of d-serine in its induction.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville ES-41013, Spain
| | - Joaquín Sánchez-Gómez
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville ES-41013, Spain
| | - Heriberto Coatl-Cuaya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville ES-41013, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville ES-41013, Spain
| |
Collapse
|
2
|
Martínez-Gallego I, Coatl-Cuaya H, Rodriguez-Moreno A. Astrocytes mediate two forms of spike timing-dependent depression at entorhinal cortex-hippocampal synapses. eLife 2024; 13:RP98031. [PMID: 39541232 PMCID: PMC11563576 DOI: 10.7554/elife.98031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The entorhinal cortex (EC) connects to the hippocampus sending different information from cortical areas that is first processed at the dentate gyrus (DG) including spatial, limbic and sensory information. Excitatory afferents from lateral (LPP) and medial (MPP) perforant pathways of the EC connecting to granule cells of the DG play a role in memory encoding and information processing and are deeply affected in humans suffering Alzheimer's disease and temporal lobe epilepsy, contributing to the dysfunctions found in these pathologies. The plasticity of these synapses is not well known yet, as are not known the forms of long-term depression (LTD) existing at those connections. We investigated whether spike timing-dependent long-term depression (t-LTD) exists at these two different EC-DG synaptic connections in mice, and whether they have different action mechanisms. We have found two different forms of t-LTD, at LPP- and MPP-GC synapses and characterised their cellular and intracellular mechanistic requirements. We found that both forms of t-LTD are expressed presynaptically and that whereas t-LTD at LPP-GC synapses does not require NMDAR, t-LTD at MPP-GC synapses requires ionotropic NMDAR containing GluN2A subunits. The two forms of t-LTD require different group I mGluR, mGluR5 LPP-GC synapses and mGluR1 MPP-GC synapses. In addition, both forms of t-LTD require postsynaptic calcium, eCB synthesis, CB1R, astrocyte activity, and glutamate released by astrocytes. Thus, we discovered two novel forms of t-LTD that require astrocytes at EC-GC synapses.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de OlavideSevillaSpain
| | - Heriberto Coatl-Cuaya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de OlavideSevillaSpain
| | - Antonio Rodriguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de OlavideSevillaSpain
| |
Collapse
|
3
|
Martínez-Gallego I, Rodríguez-Moreno A. Adenosine and Cortical Plasticity. Neuroscientist 2024:10738584241236773. [PMID: 38497585 DOI: 10.1177/10738584241236773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named synaptic plasticity. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| |
Collapse
|
4
|
Rozo JA, Martínez-Gallego I, Rodríguez-Moreno A. Cajal, the neuronal theory and the idea of brain plasticity. Front Neuroanat 2024; 18:1331666. [PMID: 38440067 PMCID: PMC10910026 DOI: 10.3389/fnana.2024.1331666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
This paper reviews the importance of Cajal's neuronal theory (the Neuron Doctrine) and the origin and importance of the idea of brain plasticity that emerges from this theory. We first comment on the main Cajal's discoveries that gave rise and confirmed his Neuron Doctrine: the improvement of staining techniques, his approach to morphological laws, the concepts of dynamic polarisation, neurogenesis and neurotrophic theory, his first discoveries of the nerve cell as an independent cell, his research on degeneration and regeneration and his fight against reticularism. Second, we review Cajal's ideas on brain plasticity and the years in which they were published, to finally focus on the debate on the origin of the term plasticity and its conceptual meaning, and the originality of Cajal's proposal compared to those of other authors of the time.
Collapse
Affiliation(s)
- Jairo A. Rozo
- Laboratory of Cellular Neuroscience and Plasticity, Universidad Pablo de Olavide, Seville, Spain
- Iván Pávlov Laboratory, Faculty of Psychology, Los Libertadores University Foundation, Bogotá, Colombia
| | - Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
5
|
Martínez-Gallego I, Rodríguez-Moreno A. Adenosine and Astrocytes Control Critical Periods of Neural Plasticity. Neuroscientist 2023; 29:532-537. [PMID: 36245418 DOI: 10.1177/10738584221126632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Windows of plasticity are fundamental for the correct formation of definitive brain circuits; these periods drive sensory and motor learning during development and ultimately learning and memory in adults. However, establishing windows of plasticity also imposes limitations on the central nervous system in terms of its capacity to recover from injury. Recent evidence highlights the important role that astrocytes and adenosine seem to play in controlling the duration of these critical periods of plasticity.
Collapse
|
6
|
Andrade-Talavera Y, Fisahn A, Rodríguez-Moreno A. Timing to be precise? An overview of spike timing-dependent plasticity, brain rhythmicity, and glial cells interplay within neuronal circuits. Mol Psychiatry 2023; 28:2177-2188. [PMID: 36991134 PMCID: PMC10611582 DOI: 10.1038/s41380-023-02027-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023]
Abstract
In the mammalian brain information processing and storage rely on the complex coding and decoding events performed by neuronal networks. These actions are based on the computational ability of neurons and their functional engagement in neuronal assemblies where precise timing of action potential firing is crucial. Neuronal circuits manage a myriad of spatially and temporally overlapping inputs to compute specific outputs that are proposed to underly memory traces formation, sensory perception, and cognitive behaviors. Spike-timing-dependent plasticity (STDP) and electrical brain rhythms are suggested to underlie such functions while the physiological evidence of assembly structures and mechanisms driving both processes continues to be scarce. Here, we review foundational and current evidence on timing precision and cooperative neuronal electrical activity driving STDP and brain rhythms, their interactions, and the emerging role of glial cells in such processes. We also provide an overview of their cognitive correlates and discuss current limitations and controversies, future perspectives on experimental approaches, and their application in humans.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| | - André Fisahn
- Department of Biosciences and Nutrition and Department of Women's and Children's Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| |
Collapse
|
7
|
Andrade-Talavera Y, Pérez-Rodríguez M, Prius-Mengual J, Rodríguez-Moreno A. Neuronal and astrocyte determinants of critical periods of plasticity. Trends Neurosci 2023:S0166-2236(23)00105-4. [PMID: 37202300 DOI: 10.1016/j.tins.2023.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Windows of plasticity allow environmental experiences to produce intense activity-dependent changes during postnatal development. The reordering and refinement of neural connections occurs during these periods, significantly influencing the formation of brain circuits and physiological processes in adults. Recent advances have shed light on factors that determine the onset and duration of sensitive and critical periods of plasticity. Although GABAergic inhibition has classically been implicated in closing windows of plasticity, astrocytes and adenosinergic inhibition have also emerged more recently as key determinants of the duration of these periods of plasticity. Here, we review novel aspects of the involvement of GABAergic inhibition, the possible role of presynaptic NMDARs, and the emerging roles of astrocytes and adenosinergic inhibition in determining the duration of windows of plasticity in different brain regions.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Mikel Pérez-Rodríguez
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - José Prius-Mengual
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain.
| |
Collapse
|
8
|
Spike timing-dependent plasticity and memory. Curr Opin Neurobiol 2023; 80:102707. [PMID: 36924615 DOI: 10.1016/j.conb.2023.102707] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Spike timing-dependent plasticity (STDP) is a bidirectional form of synaptic plasticity discovered about 30 years ago and based on the relative timing of pre- and post-synaptic spiking activity with a millisecond precision. STDP is thought to be involved in the formation of memory but the millisecond-precision spike-timing required for STDP is difficult to reconcile with the much slower timescales of behavioral learning. This review therefore aims to expose and discuss recent findings about i) the multiple STDP learning rules at both excitatory and inhibitory synapses in vitro, ii) the contribution of STDP-like synaptic plasticity in the formation of memory in vivo and iii) the implementation of STDP rules in artificial neural networks and memristive devices.
Collapse
|