1
|
Lu Z, Wang X, Lin X, Mostafa S, Zou H, Wang L, Jin B. Plant anthocyanins: Classification, biosynthesis, regulation, bioactivity, and health benefits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109268. [PMID: 39520908 DOI: 10.1016/j.plaphy.2024.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Anthocyanins are naturally water-soluble pigments of plants, which can be pink, orange, red, purple, or blue. Anthocyanins belong to a subcategory of flavonoids known as polyphenols and are consumed in plant-based foods. The antioxidant properties of anthocyanins benefit human health. However, there has been no comprehensive review of the classification, distribution, and biosynthesis of anthocyanins and their regulation in plants, along with their potential health benefits. In this review, we provide a systematic synthesis of recent progress in anthocyanin research, specifically focusing on the classification, biosynthetic pathways, regulatory mechanisms, bioactivity, and health benefits. We bridge the gaps in understanding anthocyanin biological significance and potential applications. Furthermore, we discuss future directions for anthocyanin research, such as biotechnology, bioavailability, and the integration of artificial intelligence. We highlight pivotal research questions that warrant further exploration in the field of anthocyanin research.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Xinwen Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Xinyi Lin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Salma Mostafa
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Helin Zou
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Li Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Alsharairi NA. The Role of Licorice Chalcones as Molecular Genes and Signaling Pathways Modulator-A Review of Experimental Implications for Nicotine-Induced Non-Small Cell Lung Cancer Treatment. Curr Issues Mol Biol 2024; 46:5894-5908. [PMID: 38921023 PMCID: PMC11202283 DOI: 10.3390/cimb46060352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Lung cancer (LC) represents the leading cause of global cancer deaths, with cigarette smoking being considered a major risk factor. Nicotine is a major hazardous compound in cigarette smoke (CS), which stimulates LC progression and non-small cell lung cancer (NSCLC) specifically through activation of the nicotinic acetylcholine receptor (α7nAChR)-mediated cell-signaling pathways and molecular genes involved in proliferation, angiogenesis, and metastasis. Chalcones (CHs) and their derivatives are intermediate plant metabolites involved in flavonol biosynthesis. Isoliquiritigenin (ILTG), licochalcone A-E (LicoA-E), and echinatin (ECH) are the most common natural CHs isolated from the root of Glycyrrhiza (also known as licorice). In vitro and/or vivo experiments have shown that licorice CHs treatment exhibits a range of pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects. Despite advances in NSCLC treatment, the mechanisms of licorice CHs in nicotine-induced NSCLC treatment remain unknown. Therefore, the aim of this paper is to review experimental studies through the PubMed/Medline database that reveal the effects of licorice CHs and their potential mechanisms in nicotine-induced NSCLC treatment.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
3
|
Manzari‐Tavakoli A, Babajani A, Tavakoli MM, Safaeinejad F, Jafari A. Integrating natural compounds and nanoparticle-based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy. Cancer Med 2024; 13:e7010. [PMID: 38491817 PMCID: PMC10943377 DOI: 10.1002/cam4.7010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 03/18/2024] Open
Abstract
Cancer remains a leading cause of death worldwide, necessitating the development of innovative and more effective treatment strategies. Conventional cancer treatments often suffer from limitations such as systemic toxicity, poor pharmacokinetics, and drug resistance. Recently, there has been growing attention to utilizing natural compounds derived from various sources as possible cancer therapeutics. Natural compounds have demonstrated diverse bioactive properties, including antioxidant, anti-inflammatory, and antitumor effects, making them attractive candidates for cancer treatment. However, their limited solubility and bioavailability present challenges for effective delivery to cancer cells. To overcome these limitations, researchers have turned to nanotechnology-based drug delivery systems. Nanoparticles, with their small size and unique properties, can encapsulate therapeutic agents and offer benefits such as improved solubility, prolonged drug release, enhanced cellular uptake, and targeted delivery. Functionalizing nanoparticles with specific ligands further enhances their precision in recognizing and binding to cancer cells. Combining natural compounds with nanotechnology holds great promise in achieving efficient and safe cancer treatments by enhancing bioavailability, pharmacokinetics, and selectivity toward cancer cells. This review article provides an overview of the advancements in utilizing natural substances and nanotechnology-based drug delivery systems for cancer treatment. It discusses the benefits and drawbacks of various types of nanoparticles, as well as the characteristics of natural compounds that make them appealing for cancer therapy. Additionally, current research on natural substances and nanoparticles in preclinical and clinical settings is highlighted. Finally, the challenges and future perspectives in developing natural compound-nanoparticle-based cancer therapies are discussed.
Collapse
Affiliation(s)
| | - Amirhesam Babajani
- Oncopathology Research Center, Department of Molecular Medicine, School of MedicineIran University of Medical SciencesTehranIran
| | - Maryam Manzari Tavakoli
- Department of PhytochemistryMedicinal Plants and Drugs Research Institute, Shahid Beheshti UniversityTehranIran
| | - Fahimeh Safaeinejad
- Traditional Medicine and Materia Medica Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Ameneh Jafari
- Chronic Respiratory Diseases Research Center, NRITLDShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Alsharairi NA. Experimental Studies on the Therapeutic Potential of Vaccinium Berries in Breast Cancer-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:153. [PMID: 38256707 PMCID: PMC10818444 DOI: 10.3390/plants13020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Breast cancer (BC) is the largest contributor to cancer deaths in women worldwide. Various parts of plants, including fruits, are known for their therapeutic properties and are used in traditional medicine. Fruit species exhibit anticancer activities due to the presence of bioactive natural compounds such as flavonoids and carotenoids. The Vaccinium spp. are fleshy berry-like drupes and are rich in bioactive compounds, with flavonols, flavanols, chalcones, and phenolic acids as the major groups of compounds. While there is clear evidence linking Vaccinium berries with a decreased risk of BC both in in vivo and in vitro experiments, the exact mechanisms involved in the protective effects of Vaccinium spp. rich extracts on BC cells are not fully understood. Thus, the purpose of this review is to highlight the mechanisms of action involved in the therapeutic potential of Vaccinium berries against BC in experimental models.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
5
|
Alsharairi NA. Quercetin Derivatives as Potential Therapeutic Agents: An Updated Perspective on the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:15208. [PMID: 37894889 PMCID: PMC10607898 DOI: 10.3390/ijms242015208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Flavonoids are the largest group of polyphenols, represented by many compounds that exhibit high anticancer properties. Quercetin (Q) and its main derivatives (rutin, quercitrin, isoquercitrin, isorhamnetin, tamarixetin, rhamnetin, and hyperoside) in the class of flavonols have been documented to exert anticancer activity. Q has been shown to be useful in the treatment of non-small cell lung cancer (NSCLC), as demonstrated by in vitro/in vivo studies, due to its antitumor, anti-inflammatory, anti-proliferative, anti-angiogenesis, and apoptotic properties. Some flavonoids (flavone, anthocyanins, and proanthocyanidins) have been demonstrated to be effective in nicotine-induced NSCLC treatment. However, the molecular mechanisms of quercetin derivatives (QDs) in nicotine-induced NSCLC treatment remain unclear. Thus, this review aims to summarize the available literature on the therapeutic effects of QDs in nicotine-induced NSCLC.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
6
|
Sansone L, Milani F, Fabrizi R, Belli M, Cristina M, Zagà V, de Iure A, Cicconi L, Bonassi S, Russo P. Nicotine: From Discovery to Biological Effects. Int J Mol Sci 2023; 24:14570. [PMID: 37834017 PMCID: PMC10572882 DOI: 10.3390/ijms241914570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Nicotine, the primary psychoactive agent in tobacco leaves, has led to the widespread use of tobacco, with over one billion smokers globally. This article provides a historical overview of tobacco and discusses tobacco dependence, as well as the biological effects induced by nicotine on mammalian cells. Nicotine induces various biological effects, such as neoangiogenesis, cell division, and proliferation, and it affects neural and non-neural cells through specific pathways downstream of nicotinic receptors (nAChRs). Specific effects mediated by α7 nAChRs are highlighted. Nicotine is highly addictive and hazardous. Public health initiatives should prioritize combating smoking and its associated risks. Understanding nicotine's complex biological effects is essential for comprehensive research and informed health policies. While potential links between nicotine and COVID-19 severity warrant further investigation, smoking remains a significant cause of morbidity and mortality globally. Effective public health strategies are vital to promote healthier lifestyles.
Collapse
Affiliation(s)
- Luigi Sansone
- Department of Human Sciences and Quality, Life Promotion San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (L.S.); (M.B.); (M.C.); (A.d.I.); (S.B.)
- MEBIC Consortium, San Raffaele University, 00166 Rome, Italy
| | - Francesca Milani
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy; (F.M.); (R.F.); (L.C.)
| | - Riccardo Fabrizi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy; (F.M.); (R.F.); (L.C.)
| | - Manuel Belli
- Department of Human Sciences and Quality, Life Promotion San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (L.S.); (M.B.); (M.C.); (A.d.I.); (S.B.)
- MEBIC Consortium, San Raffaele University, 00166 Rome, Italy
| | - Mario Cristina
- Department of Human Sciences and Quality, Life Promotion San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (L.S.); (M.B.); (M.C.); (A.d.I.); (S.B.)
- Department of Molecular Medicine, University La Sapienza, Viale del Policlinico 155, 00161 Rome, Italy
| | - Vincenzo Zagà
- Italian Society of Tabaccology (SITAB), 00136 Bologna, Italy;
| | - Antonio de Iure
- Department of Human Sciences and Quality, Life Promotion San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (L.S.); (M.B.); (M.C.); (A.d.I.); (S.B.)
- Experimental Neurophysiology IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Luca Cicconi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy; (F.M.); (R.F.); (L.C.)
| | - Stefano Bonassi
- Department of Human Sciences and Quality, Life Promotion San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (L.S.); (M.B.); (M.C.); (A.d.I.); (S.B.)
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy; (F.M.); (R.F.); (L.C.)
| | - Patrizia Russo
- Department of Human Sciences and Quality, Life Promotion San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (L.S.); (M.B.); (M.C.); (A.d.I.); (S.B.)
- MEBIC Consortium, San Raffaele University, 00166 Rome, Italy
| |
Collapse
|
7
|
Xie Y, Deng Q, Guo M, Li X, Xian D, Zhong J. Proanthocyanidins: A novel approach to Henoch‑Schonlein purpura through balancing immunity and arresting oxidative stress via TLR4/MyD88/NF‑κB signaling pathway (Review). Exp Ther Med 2023; 25:300. [PMID: 37229322 PMCID: PMC10203752 DOI: 10.3892/etm.2023.11999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Henoch-Schonlein purpura (HSP), a recurrent and immunoglobulin (Ig)A-mediated vasculitis, presents not only as skin lesions but also as systemic involvement that can be life-threatening. Although the etiology of HSP remains unknown, immune imbalance and oxidative stress (OS) are primary contributors to its pathogenesis, alongside the abnormal activation of Toll-like receptor (TLR)/myeloid differentiation primary response gene 88 (MyD88)/nuclear factor-κB (NF-κB) pathway. TLRs, especially TLR4, stimulate downstream signaling molecules such as NF-κB and proinflammatory cytokines, which are released when TLRs combine with the key adapter molecule MyD88. This leads to the activation of T helper (Th) cell 2/Th17 and overproduction of reactive oxygen species (ROS). The function of regulatory T (Treg) cells is suppressed in the process. Th17/Treg imbalance then produces various inflammatory cytokines to promote proliferation and differentiation of B cells and the secretion of antibodies. IgA is secreted, and it binds to vascular endothelial surface receptors where the complex induces injury of the vascular endothelial cells. Additionally, excessive ROS creates OS that leads to an inflammatory response and vascular cell apoptosis or necrosis, thereby contributing to vascular endothelial damage and HSP occurrence. Proanthocyanidins are active compounds naturally enriched in fruits, vegetables and plants. Proanthocyanidins have diverse properties, including anti-inflammatory, antioxidant, antibacterial, immunoregulatory, anticarcinogenic and vascular protective effects. Proanthocyanidins are used in the management of various diseases. Proanthocyanidins regulate T cells, equilibrate immunity and arrest OS by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Considering the pathogenesis of HSP and the properties of proanthocyanidins, the present study hypothesized that these compounds may potentially lead to HSP recovery through modulating the immune equilibrium and preventing OS by inhibiting the TLR4/MyD88/NF-κB pathway. To the best of our knowledge, however, little is known about the positive effects of proanthocyanidins against HSP. The present review summarizes the potential of proanthocyanidins to treat HSP.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiyan Deng
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Menglu Guo
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaolong Li
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Deihai Xian
- Department of Neurobiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jianqiao Zhong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
8
|
Zhao F, Zhao H, Wu W, Wang W, Li W. Research on Anthocyanins from Rubus “Shuofeng” as Potential Antiproliferative and Apoptosis-Inducing Agents. Foods 2023; 12:foods12061216. [PMID: 36981143 PMCID: PMC10048323 DOI: 10.3390/foods12061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Blackberries have high nutritional value and strong biological activities, such as antiproliferative activity. Anthocyanins are important functional components in blackberries. We collected 25 kinds (lines) of blackberries from our nursery to investigate antiproliferative agents in natural foods. Among them, the Shuofeng variety had the highest anthocyanin content, with 2.54 mg/g of fresh fruit, which increased to 357.75 mg/g of dried powder through ultrasound-assisted solvent extraction and macroporous resin adsorption. Additional experiments showed that Shuofeng’s anthocyanin content had high anti-HepG2 activity in vitro and in vivo, as well as activity against Hela (68.62 μg/mL), HepG2 (55.85 μg/mL), MCF-7 (181.21 μg/mL), and A549 cells (82.01 μg/mL), as determined by MTT assay. It also had no apparent toxic effects. The combination of DDP and DOX significantly enhanced the antiproliferative activity of the four cell lines. The IC50 value of Shuofeng’s anthocyanin content combined with DOX in HepG2 cells was the lowest at only 0.08 μg/mL, indicating that the combination of drugs had additive and synergistic effects. Shuofeng’s anthocyanin content might intercalate into DNA and alter or destroy DNA, causing apoptosis and inhibiting cell proliferation. Our results show that blackberry anthocyanins can inhibit the proliferation of cancer cells and their possible mechanisms. However, we must study the deeper mechanism and explore its targeting effects in the future.
Collapse
Affiliation(s)
- Fengyi Zhao
- Fruit Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Huifang Zhao
- Fruit Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wenlong Wu
- Fruit Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Correspondence: (W.W.); (W.W.); Tel.: +86-2584347046 (Weifan Wang)
| | - Weifan Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (W.W.); (W.W.); Tel.: +86-2584347046 (Weifan Wang)
| | - Weilin Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
9
|
Ding Y, Hou R, Yu J, Xing C, Zhuang C, Qu Z. Dietary Phytochemicals as Potential Chemopreventive Agents against Tobacco-Induced Lung Carcinogenesis. Nutrients 2023; 15:491. [PMID: 36771198 PMCID: PMC9920588 DOI: 10.3390/nu15030491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/23/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Lung cancer is the second most common cancer in the world. Cigarette smoking is strongly connected with lung cancer. Benzo[a]pyrene (BaP) and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-butanone (NNK) are the main carcinogens in cigarette smoking. Evidence has supported the correlation between these two carcinogens and lung cancer. Epidemiology analysis suggests that lung cancer can be effectively prevented through daily diet adjustments. This review aims to summarize the studies published in the past 20 years exploring dietary phytochemicals using Google Scholar, PubMed, and Web of Science databases. Dietary phytochemicals mainly include medicinal plants, beverages, fruits, vegetables, spices, etc. Moreover, the perspectives on the challenges and future directions of dietary phytochemicals for lung cancer chemoprevention will be provided. Taken together, treatment based on the consumption of dietary phytochemicals for lung cancer chemoprevention will produce more positive outcomes in the future and offer the possibility of reducing cancer risk in society.
Collapse
Affiliation(s)
- Yan Ding
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Ruilin Hou
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Chunlin Zhuang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhuo Qu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| |
Collapse
|
10
|
Metabolic Fate of Orally Ingested Proanthocyanidins through the Digestive Tract. Antioxidants (Basel) 2022; 12:antiox12010017. [PMID: 36670878 PMCID: PMC9854439 DOI: 10.3390/antiox12010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Proanthocyanidins (PACs), which are oligomers or polymers of flavan-3ols with potent antioxidative activity, are well known to exert a variety of beneficial health effects. Nonetheless, their bioaccessibility and bioavailability have been poorly assessed. In this review, we focused on the metabolic fate of PACs through the digestive tract. When oligomeric and polymeric PACs are orally ingested, a large portion of the PACs reach the colon, where a small portion is subjected to microbial degradation to phenolic acids and valerolactones, despite the possibility that slight depolymerization of PACs occurs in the stomach and small intestine. Valerolactones, as microbiota-generated catabolites of PACs, may contribute to some of the health benefits of orally ingested PACs. The remaining portion interacts with gut microbiota, resulting in improved microbial diversity and, thereby, contributing to improved health. For instance, an increased amount of beneficial gut bacteria (e.g., Akkermansia muciniphila and butyrate-producing bacteria) could ameliorate host metabolic functions, and a lowered ratio of Firmicutes/Bacteroidetes at the phylum level could mitigate obesity-related metabolic disorders.
Collapse
|
11
|
Dietary Antioxidants and Lung Cancer Risk in Smokers and Non-Smokers. Healthcare (Basel) 2022; 10:healthcare10122501. [PMID: 36554027 PMCID: PMC9778085 DOI: 10.3390/healthcare10122501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Smoking is considered a major risk factor in the development of lung diseases worldwide. Active smoking and secondhand (passive) smoke (SHS) are related to lung cancer (LC) risk. Oxidative stress (OS) and/or lipid peroxidation (LP) induced by cigarette smoke (CS) are found to be involved in the pathogenesis of LC. Meta-analyses and other case-control/prospective cohort studies are inconclusive and have yielded inconsistent results concerning the protective role of dietary vitamins C and E, retinol, and iron intake against LC risk in smokers and/or non-smokers. Furthermore, the role of vitamins and minerals as antioxidants with the potential in protecting LC cells against CS-induced OS in smokers and non-smokers has not been fully elucidated. Thus, this review aims to summarize the available evidence reporting the relationships between dietary antioxidant intake and LC risk in smokers and non-smokers that may be used to provide suggestions for future research.
Collapse
|
12
|
Zhao Y, Zhai G, Li X, Tao H, Li L, He Y, Zhang X, Wang F, Hong G, Zhu Y. Metabolomics Reveals Nutritional Diversity among Six Coarse Cereals and Antioxidant Activity Analysis of Grain Sorghum and Sweet Sorghum. Antioxidants (Basel) 2022; 11:antiox11101984. [PMID: 36290708 PMCID: PMC9598553 DOI: 10.3390/antiox11101984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/29/2022] Open
Abstract
Coarse cereals are rich in dietary fiber, B vitamins, minerals, secondary metabolites, and other bioactive components, which exert numerous health benefits. To better understand the diversity of metabolites in different coarse cereals, we performed widely targeted metabolic profiling analyses of six popular coarse cereals, millet, coix, buckwheat, quinoa, oat, and grain sorghum, of which 768 metabolites are identified. Moreover, quinoa and buckwheat showed significantly different metabolomic profiles compared with other coarse cereals. Analysis of the accumulation patterns of common nutritional metabolites among six coarse cereals, we found that the accumulation of carbohydrates follows a conserved pattern in the six coarse cereals, while those of amino acids, vitamins, flavonoids, and lipids were complementary. Furthermore, the species-specific metabolites in each coarse cereal were identified, and the neighbor-joining tree for the six coarse cereals was constructed based on the metabolome data. Since sorghum contains more species-specific metabolites and occupies a unique position on the neighbor-joining tree, the metabolite differences between grain sorghum 654 and sweet sorghum LTR108 were finally compared specifically, revealing that LTR108 contained more flavonoids and had higher antioxidant activity than 654. Our work supports an overview understanding of nutrient value in different coarse cereals, which provides the metabolomic evidence for the healthy diet. Additionally, the superior antioxidant activity of sweet sorghum provides clues for its targeted uses.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
| | - Guowei Zhai
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuetong Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Han Tao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
| | - Fulin Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
- Correspondence: (G.H.); (Y.Z.)
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (G.H.); (Y.Z.)
| |
Collapse
|