1
|
Ma B, Li ZY, Li RC, Xu MC, Wang ZQ, Leng PS, Hu ZH, Wu J. Functional Analysis of PsHMGR1 and PsTPS1 Related to Floral Terpenoids Biosynthesis in Tree Peony. Int J Mol Sci 2024; 25:12247. [PMID: 39596312 PMCID: PMC11594739 DOI: 10.3390/ijms252212247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Tree peony (Paeonia suffruticosa), as a popular ornamental plant worldwide, has a unique floral fragrance, and it is important in the pollination, ornamental, food, and fragrance product industries. However, the underlying molecular mechanisms for the synthesis of floral fragrance terpenoids in tree peony are not well understood, constraining their exploitation. P. suffruticosa 'Oukan' produces strong floral fragrance terpenoids with high ornamental value and excellent stress resistance and is considered a valuable model for studying tree peony floral fragrance formation. Based on transcriptome data analysis, the PsHMGR1 and PsTPS1 genes associated with floral terpene synthesis were cloned. Then, PsHMGR1 and PsTPS1 were functionally characterized by amino acid sequence analysis, multiple sequence alignment, phylogenetic tree construction, qRT-PCR, and transgenic assay. PsHMGR1 contains two transmembrane structures and a conserved HMG-CoA_reductase_class I domain, and PsTPS1 belongs to TPS-a subfamily. The qRT-PCR analysis showed that the expression levels of PsHMGR1 and PsTPS1 increased and then decreased at different flower development stages, and both were significantly higher in flowers than in roots, stems, and leaves. In addition, the linalool content in PsHMGR1 transgenic lines was significantly higher than that of WT. Germacrene D, which was not found in WT, was detected in the flowers of PsTPS1 transgenic lines. These results indicate that PsHMGR1 and PsTPS1 promote terpene synthesis in plants and provide ideas for the molecular mechanism of enhancing terpene synthesis in tree peony floral fragrance.
Collapse
Affiliation(s)
- Bo Ma
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
| | - Zi-Yao Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
| | - Rong-Chen Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
| | - Mei-Chen Xu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
| | - Zhen-Quan Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
| | - Ping-Sheng Leng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| | - Zeng-Hui Hu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
- Ancient Tree Health and Culture Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing 102206, China
| | - Jing Wu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| |
Collapse
|
2
|
Li H, Li Y, Yan H, Bao T, Shan X, Caissard JC, Zhang L, Fang H, Bai X, Zhang J, Wang Z, Wang M, Guan Q, Cai M, Ning G, Jia X, Boachon B, Baudino S, Gao X. The complexity of volatile terpene biosynthesis in roses: Particular insights into β-citronellol production. PLANT PHYSIOLOGY 2024; 196:1908-1922. [PMID: 39186538 DOI: 10.1093/plphys/kiae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024]
Abstract
The fascinating scent of rose (Rosa genus) flowers has captivated human senses for centuries, making them one of the most popular and widely used floral fragrances. Despite much progress over the last decade, many biochemical pathways responsible for rose scents remain unclear. We analyzed the floral scent compositions from various rose varieties and selected the modern cultivar Rosa hybrida "Double Delight" as a model system to unravel the formation of rose dominant volatile terpenes, which contribute substantially to the rose fragrance. Key genes involved in rose terpene biosynthesis were functionally characterized. Cytosolic geranyl diphosphate (GPP) generated by geranyl/farnesyl diphosphate synthase (G/FPPS1) catalysis played a pivotal role in rose scent production, and terpene synthases in roses play an important role in the formation of most volatile terpenes, but not for geraniol, citral, or β-citronellol. Subsequently, a series of enzymes, including geraniol dehydrogenase, geranial reductase, 12-oxophytodienoate reductase, and citronellal reductase, were characterized as involved in the transformation of geraniol to β-citronellol in roses through three successive steps. Interestingly, the β-citronellol biosynthesis pathway appears to be conserved in other horticultural plants like Lagerstroemia caudata and Paeonia lactiflora. Our findings provide valuable insights into the biosynthesis of rose volatile terpenoid compounds and offer essential gene resources for future breeding and molecular modification efforts.
Collapse
Affiliation(s)
- Hongjie Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Huijun Yan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Jean-Claude Caissard
- CNRS UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet Saint-Etienne, Saint-Etienne 42023, France
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huiyi Fang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xue Bai
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jia Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Zhaoxuan Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Min Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Qian Guan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Ming Cai
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan 430070, China
| | - Xiujuan Jia
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Benoît Boachon
- CNRS UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet Saint-Etienne, Saint-Etienne 42023, France
| | - Sylvie Baudino
- CNRS UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet Saint-Etienne, Saint-Etienne 42023, France
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Jariani P, Shahnejat-Bushehri AA, Naderi R, Zargar M, Naghavi MR. Molecular and Phytochemical Characteristics of Flower Color and Scent Compounds in Dog Rose ( Rosa canina L.). Molecules 2024; 29:3145. [PMID: 38999097 PMCID: PMC11242971 DOI: 10.3390/molecules29133145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 07/14/2024] Open
Abstract
This study delves into the chemical and genetic determinants of petal color and fragrance in Rosa canina L., a wild rose species prized for its pharmacological and cosmetic uses. Comparative analysis of white and dark pink R. canina flowers revealed that the former harbors significantly higher levels of total phenolics (TPC) and flavonoids (TFC), while the latter is distinguished by elevated total anthocyanins (TAC). Essential oils in the petals were predominantly composed of aliphatic hydrocarbons, with phenolic content chiefly constituted by flavonols and anthocyanins. Notably, gene expression analysis showed an upregulation in most genes associated with petal color and scent biosynthesis in white buds compared to dark pink open flowers. However, anthocyanin synthase (ANS) and its regulatory gene RhMYB1 exhibited comparable expression levels across both flower hues. LC-MS profiling identified Rutin, kaempferol, quercetin, and their derivatives as key flavonoid constituents, alongside cyanidin and delphinidin as the primary anthocyanin compounds. The findings suggest a potential feedback inhibition of anthocyanin biosynthesis in white flowers. These insights pave the way for the targeted enhancement of R. canina floral traits through metabolic and genetic engineering strategies.
Collapse
Affiliation(s)
- Parisa Jariani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
| | - Ali-Akbar Shahnejat-Bushehri
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
| | - Roohangiz Naderi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia
| |
Collapse
|
4
|
Kılıç T, Kazaz S, Meral ED, Kırbay E. Inheritance of Some Traits in Crosses between Hybrid Tea Roses and Old Garden Roses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1797. [PMID: 38999637 PMCID: PMC11244027 DOI: 10.3390/plants13131797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
The limited knowledge about the inheritance of traits in roses makes the efficient development of rose varieties challenging. In order to achieve breeding goals, the inheritance of traits needs to be explored. Additionally, for the inheritance of a trait like scent, which remains a mystery, it is crucial to know the success of parental traits in transmitting them to the next generation. Understanding this allows for accurate parental selection, ensuring sustainability in meeting market demand and providing convenience to breeders. The aim of this study was to assess the success of cross-combinations between scented old garden roses and hybrid tea roses used in cut roses in transferring their existing traits, with the objective of achieving scented cut roses. The evaluated traits included recurrent blooming, flower stem length, flower diameter, petal number, scent, and bud length of both parents and progenies. The inheritance of these traits was evaluated through theoretical evaluations, including calculating heterosis and heterobeltiosis and determining narrow-sense heritability. The combinations and examined traits were assessed using a hierarchical clustering heat map. The results of this study indicated that flower stem length, flower diameter, petal number, and bud length traits had a moderate degree of narrow-sense heritability, suggesting the influence of non-additive genes on these traits. This study observed a low success rate in obtaining progenies with scent in cross combinations between cut roses and old garden roses, indicating the challenges in obtaining scented genotypes. The discrepancy between the observed phenotypic rates and the expected phenotypic and genotypic rates, according to Punnett squares, suggests that the examined traits could be controlled by polygenic genes. The progenies were observed to exhibit a greater resemblance to old garden roses than hybrid tea roses and did not meet the commercial quality standards for cut flowers. The significant negative heterosis observed in 65.12% (petal number) and 99.61% (flower diameter) of the progenies provides strong evidence of resemblance to old garden roses. Considering these findings, it is recommended to consider old garden roses as parents, taking into account their suitability for other breeding objectives.
Collapse
Affiliation(s)
- Tuğba Kılıç
- Horticulture Department, Yozgat Bozok University, Yozgat 66200, Türkiye
| | - Soner Kazaz
- Horticulture Department, Ankara University, Ankara 06110, Türkiye
| | - Ezgi Doğan Meral
- Horticulture Department, Bingöl University, Bingöl 12000, Türkiye
| | - Emine Kırbay
- Ataturk Health Services Vocational School, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Türkiye
| |
Collapse
|
5
|
Yudanova SS, Dorogina OV, Vasilyeva OY. Morphological and molecular analysis of rose cultivars from the Grandiflora and Kordesii garden groups. Vavilovskii Zhurnal Genet Selektsii 2024; 28:55-62. [PMID: 38465252 PMCID: PMC10917683 DOI: 10.18699/vjgb-24-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024] Open
Abstract
The breeding of remontant rose cultivars that are resistant to diseases and adverse conditions, with high decorative value and continuous flowering is the most important task during work with the gene pool of garden roses. Currently, intercultivar hybridization within a single garden group has largely outlived its usefulness. It is necessary to breed for highly decorative forms or cultivars that have outstanding resistance, morphological characters and patterns of seasonal rhythms, and use these plants as parental forms in further breeding. This study represents a comparative analysis of rose cultivars from two garden groups, Grandiflora (Gurzuf, Lezginka, Korallovy Syurpriz, Queen Elizabeth, Komsomolsky Ogonyok, Love) and Rosa Kordesii (Letniye Zvyozdy, Dortmund, Gutsulochka). These cultivars proved themselves during many years of testing in harsh climatic conditions. The objectives of the study were to determine the genetic relationship within the groups and to assign phenotypically different cultivars to one or another garden group. The analysis was carried out by morphological, phenological and ISSR markers. According to the phenological observations on the Grandiflora cultivars, Komsomolsky Ogonyok had later budding and flowering stages. Polymorphic data generated from the ISSR markers showed that this cultivar was the most distant from the others and formed a separate cluster on the dendrogram. A comparison of the morphological characters (flower diameter, number of petals, peduncle length, bush height) showed a significant difference ( p < 0.05) between Komsomolsky Ogonyok and the other Grandiflora cultivars. A dendrogram based on a molecular analysis showed a lack of close relationships between Komsomolsky Ogonyok and the Kordesii group, which formed a separate cluster. A pairwise comparison of the morphological characters in Komsomolsky Ogonyok with the Kordesii group revealed a significant ( p <0.05) difference in three of the four characters studied. The exceptions were flower diameter when comparing with Dortmund and Letniye Zvyozdy and peduncle length when comparing with Gutsulochka. Although Komsomolsky Ogonyok has a pattern of seasonal development similar to Dortmund in the Kordesii group, the molecular analysis did not assign the former to this group of roses. The cultivars that have valuable characters that no average rose does and that are phenotypically different from such roses represent the most valuable breeding material.
Collapse
Affiliation(s)
- S S Yudanova
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O V Dorogina
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O Yu Vasilyeva
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Fan WL, Wen CH, Ma LT, Ho CL, Tung GS, Tien CC, Chu FH. Monoterpene synthases contribute to the volatile production in tana (Zanthoxylum ailanthoides) through indigenous cultivation practices. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107969. [PMID: 37597276 DOI: 10.1016/j.plaphy.2023.107969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Tana (Zanthoxylum ailanthoides), a perennial deciduous species in the Rutaceae family, possesses leaves with a unique fragrance that indigenous peoples incorporate into their traditional cuisine. In Kalibuan, the cultivated tana trees were pruned repeatedly to maintain a shorter height, which led to the growth of new leaves that were spicier and pricklier. Tana leaves contain a range of volatile terpenoids, and the pungent aroma may arise from the presence of monoterpenoids. To gain insight into the biosynthetic pathway, five candidate monoterpene synthase genes were cloned and characterized using a purified recombinant protein assay. The main product of Za_mTPS1, Za_mTPS2, and Za_mTPS5 is sabinene, geraniol, and (E)-β-ocimene, respectively. The main product of Za_mTPS3 and Za_mTPS4 is linalool. Real-time PCR analysis revealed that Za_mTPS1 and Za_mTPS5 are expressed at higher levels in prickly leaves of cultivated tana, suggesting that they may contribute to the distinctive aroma of this plant.
Collapse
Affiliation(s)
- Wei-Lin Fan
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Hsiang Wen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Li-Ting Ma
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Chen-Lung Ho
- Taiwan Forestry Research Institute, Taipei, 10066, Taiwan
| | | | | | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
7
|
Jia Y, Yin X, Yang H, Xiang Y, Ding K, Pan Y, Jiang B, Yong X. Transcriptome Analyses Reveal the Aroma Terpeniods Biosynthesis Pathways of Primula forbesii Franch. and the Functional Characterization of the PfDXS2 Gene. Int J Mol Sci 2023; 24:12730. [PMID: 37628910 PMCID: PMC10454305 DOI: 10.3390/ijms241612730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Primula forbesii Franch. is a unique biennial herb with a strong floral fragrance, making it an excellent material for studying the aroma characteristics of the genus Primula. The floral scent is an important ornamental trait that facilitates fertilization. However, the molecular mechanism regulating the floral scent in Primula is unknown. In order to better understand the biological mechanisms of floral scents in this species, this study used RNA sequencing analysis to discuss the first transcriptome sequence of four flowering stages of P. forbesii, which generated 12 P. forbesii cDNA libraries with 79.64 Gb of clean data that formed 51,849 unigenes. Moreover, 53.26% of the unigenes were annotated using public databases. P. forbesii contained 44 candidate genes covering all known enzymatic steps for the biosynthesis of volatile terpenes, the major contributor to the flower's scent. Finally, 1-deoxy-d-xylulose 5-phosphate synthase gene of P. forbesii (PfDXS2, MK370094), the first key enzyme gene in the 2-c-methyl-d-erythritol 4-phosphate (MEP) pathway of terpenoids, was cloned and functionally verified using virus-induced gene silencing (VIGs). The results showed that PfDXS2-silencing significantly reduced the relative concentrations of main volatile terpenes. This report is the first to present molecular data related to aroma metabolites biosynthesis pathways and the functional characterization of any P. forbesii gene. The data on RNA sequencing provide comprehensive information for further analysis of other plants of the genus Primula.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (H.Y.); (Y.X.); (K.D.); (Y.P.); (B.J.); (X.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhao Q, Gu L, Li Y, Zhi H, Luo J, Zhang Y. Volatile Composition and Classification of Paeonia lactiflora Flower Aroma Types and Identification of the Fragrance-Related Genes. Int J Mol Sci 2023; 24:ijms24119410. [PMID: 37298360 DOI: 10.3390/ijms24119410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Flower scent is one of the main ornamental characteristics of herbaceous peony, and the improvement of flower fragrance is a vital objective of herbaceous peony breeding. In this study, 87 herbaceous peony cultivars were divided into three groups (no/light fragrance, medium fragrance, and strong fragrance) based on their sensory evaluation scores, and 16 strong fragrance cultivars and one no fragrance cultivar were selected for subsequent analysis. Sixty-eight volatile components were detected in these 17 cultivars based on solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS), and 26 types were identified as important scent components. They were composed of terpenoids, benzenoids/phenylpropanoids, and fatty acid derivatives. According to the content and odor threshold of these main aroma components, the characteristic aroma substances of herbaceous peony were identified, including linalool, geraniol, citronellol, and phenylethyl alcohol (2-PE). The cultivars of strong scented herbaceous peony were divided into three types: rose scent, lily scent, and mixed scent. We explored the possible key genes of characteristic aroma substances in herbaceous peony petals with different odors through the qRT-PCR. The key genes encoding monoterpene biosynthesis were found to be PlDXS2, PlDXR1, PlMDS1, PlHDR1, PlGPPS3, and PlGPPS4. In addition, the linalool synthase (LIS) gene and the geraniol synthase (GES) gene were also found. PlAADC1, PlPAR1, and PlMAO1, related to the biosynthesis of 2-PE were detected, and the synthetic pathway of 2-PE was speculated. In conclusion, these findings revealed that the difference in gene expression of monoterpene and 2-PE synthesis pathway was related to the difference in the fragrance of herbaceous peony. This study explored the releasing pathway of herbaceous peony characteristic aroma substances and provided key genetic resources for fragrance improvement.
Collapse
Affiliation(s)
- Qian Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Lina Gu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Yuqing Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Hui Zhi
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| |
Collapse
|
9
|
Popović M, Burčul F, Veršić Bratinčević M, Režić Mužinić N, Skroza D, Frleta Matas R, Nazlić M, Ninčević Runjić T, Jukić Špika M, Bego A, Dunkić V, Vitanović E. In the Beginning Was the Bud: Phytochemicals from Olive ( Olea europaea L.) Vegetative Buds and Their Biological Properties. Metabolites 2023; 13:metabo13020237. [PMID: 36837856 PMCID: PMC9966879 DOI: 10.3390/metabo13020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Even though Olea europaea L. is one of the most important and well-studied crops in the world, embryonic parts of the plants remain largely understudied. In this study, comprehensive phytochemical profiling of olive vegetative buds of two Croatian cultivars, Lastovka and Oblica, was performed with an analysis of essential oils and methanol extracts as well as biological activities (antioxidant, antimicrobial, and cytotoxic activities). A total of 113 different volatiles were identified in essential oils with hydrocarbons accounting for up to 60.30% and (Z)-3-heptadecene being the most abundant compound. Oleacein, oleuropein, and 3-hydroxytyrosol had the highest concentrations of all phenolics in the bud extracts. Other major compounds belong to the chemical classes of sugars, fatty acids, and triterpenoid acids. Antioxidant, antimicrobial, and cytotoxic activities were determined for both cultivars. Apart from antioxidant activity, essential oils had a weak overall biological effect. The extract from cultivar Lastovka showed much better antioxidant activity than both isolates with both methods (with an oxygen radical absorbance capacity value of 1835.42 μM TE/g and DPPH IC50 of 0.274 mg/mL), as well as antimicrobial activity with the best results against Listeria monocytogenes. The human breast adenocarcinoma MDA-MB-231 cell line showed the best response for cultivar Lastovka bud extract (IC50 = 150 μg/mL) among three human cancer cell lines tested. These results demonstrate great chemical and biological potential that is hidden in olive buds and the need to increase research in the area of embryonic parts of plants.
Collapse
Affiliation(s)
- Marijana Popović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
- Correspondence: ; Tel.: +385-21434450
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Maja Veršić Bratinčević
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Roberta Frleta Matas
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia
| | - Marija Nazlić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Tonka Ninčević Runjić
- Department for Plant Sciences, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Maja Jukić Špika
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Ana Bego
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Valerija Dunkić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Elda Vitanović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| |
Collapse
|
10
|
Yang G, Qin Y, Jia Y, Xie X, Li D, Jiang B, Wang Q, Feng S, Wu Y. Transcriptomic and metabolomic data reveal key genes that are involved in the phenylpropanoid pathway and regulate the floral fragrance of Rhododendron fortunei. BMC PLANT BIOLOGY 2023; 23:8. [PMID: 36600207 PMCID: PMC9814181 DOI: 10.1186/s12870-022-04016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND To reveal the key genes involved in the phenylpropanoid pathway, which ultimately governs the fragrance of Rhododendron fortunei, we performed a comprehensive transcriptome and metabolomic analysis of the petals of two different varieties of two alpine rhododendrons: the scented R. fortunei and the unscented Rhododendron 'Nova Zembla'. RESULTS Our transcriptomic and qRT-PCR data showed that nine candidate genes were highly expressed in R. fortunei but were downregulated in Rhododendron 'Nova Zembla'. Among these genes, EGS expression was significantly positively correlated with various volatile benzene/phenylpropanoid compounds and significantly negatively correlated with the contents of various nonvolatile compounds, whereas CCoAOMT, PAL, C4H, and BALDH expression was significantly negatively correlated with the contents of various volatile benzene/phenylpropanoid compounds and significantly positively correlated with the contents of various nonvolatile compounds. CCR, CAD, 4CL, and SAMT expression was significantly negatively correlated with the contents of various benzene/phenylpropanoid compounds. The validation of RfSAMT showed that the RfSAMT gene regulates the synthesis of aromatic metabolites in R. fortunei. CONCLUSION The findings of this study indicated that key candidate genes and metabolites involved in the phenylpropanoid biosynthesis pathway may govern the fragrance of R. fortunei. This lays a foundation for further research on the molecular mechanism underlying fragrance in the genus Rhododendron.
Collapse
Affiliation(s)
- Guoxia Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Yi Qin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Yonghong Jia
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Xiaohong Xie
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Dongbin Li
- Ningbo Forest Farm, Ningbo, 315100, Zhejiang, China
| | - Baoxin Jiang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Qu Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Siyu Feng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Yueyan Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
11
|
Shi S, Zhang S, Wu J, Liu X, Zhang Z. Identification of long non-coding RNAs involved in floral scent of Rosa hybrida. FRONTIERS IN PLANT SCIENCE 2022; 13:996474. [PMID: 36267940 PMCID: PMC9577252 DOI: 10.3389/fpls.2022.996474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) were found to play important roles in transcriptional, post-transcriptional, and epigenetic gene regulation in various biological processes. However, lncRNAs and their regulatory roles remain poorly studied in horticultural plants. Rose is economically important not only for their wide use as garden and cut flowers but also as important sources of natural fragrance for perfume and cosmetics industry, but presently little was known about the regulatory mechanism of the floral scent production. In this paper, a RNA-Seq analysis with strand-specific libraries, was performed to rose flowers in different flowering stages. The scented variety 'Tianmidemeng' (Rosa hybrida) was used as plant material. A total of 13,957 lncRNAs were identified by mining the RNA-Seq data, including 10,887 annotated lncRNAs and 3070 novel lncRNAs. Among them, 10,075 lncRNAs were predicted to possess a total of 29,622 target genes, including 54 synthase genes and 24 transcription factors related to floral scent synthesis. 425 lncRNAs were differentially expressed during the flowering process, among which 19 were differentially expressed among all the three flowering stages. Using weighted correlation network analysis (WGCNA), we correlate the differentially-expressed lncRNAs to synthesis of individual floral scent compounds. Furthermore, regulatory function of one of candidate lncRNAs for floral scent synthesis was verified using VIGS method in the rose. In this study, we were able to show that lncRNAs may play important roles in floral scent production in the rose. This study also improves our understanding of how plants regulate their secondary metabolism by lncRNAs.
Collapse
Affiliation(s)
- Shaochuan Shi
- Vegetable Research Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Shiya Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|