1
|
Karpenko DV. Immune Privileges as a Result of Mutual Regulation of Immune and Stem Systems. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1818-1831. [PMID: 38105201 DOI: 10.1134/s0006297923110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023]
Abstract
Immune privileges of cancer stem cells is a well-known and widely studied problem, as presence of such cells in tumors is associated with refractoriness, recurrence, and metastasis. Accumulating evidence also suggests presence of immune privileges in non-pathological stem cells in addition to their other defense mechanisms against damaging factors. This similarity between pathological and normal stem cells raises the question of why stem cells have such a potentially dangerous property. Regulation of vital processes of autoimmunity control and regeneration realized through interactions between immune cells, stem cells, and their microenvironment are reviewed in this work as causes of formation of the stem cell immune privilege. Deep mutual integration between regulations of stem and immune cells is noted. Considering diversity and complexity of mutual regulation of stem cells, their microenvironment, and immune system, I suggest the term "stem system".
Collapse
Affiliation(s)
- Dmitriy V Karpenko
- Laboratory of Epigenetic Regulation of Hematopoiesis, National Medical Research Center for Hematology, Moscow, 125167, Russia.
| |
Collapse
|
2
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
3
|
Kun-Varga A, Gubán B, Miklós V, Parvaneh S, Guba M, Szűcs D, Monostori T, Varga J, Varga Á, Rázga Z, Bata-Csörgő Z, Kemény L, Megyeri K, Veréb Z. Herpes Simplex Virus Infection Alters the Immunological Properties of Adipose-Tissue-Derived Mesenchymal-Stem Cells. Int J Mol Sci 2023; 24:11989. [PMID: 37569367 PMCID: PMC10418794 DOI: 10.3390/ijms241511989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2023] Open
Abstract
The proper functioning of mesenchymal stem cells (MSCs) is of paramount importance for the homeostasis of the body. Inflammation and infection can alter the function of MSCs, which can also affect the regenerative potential and immunological status of tissues. It is not known whether human herpes simplex viruses 1 and 2 (HSV1 and HSV2), well-known human pathogens that can cause lifelong infections, can induce changes in MSCs. In non-healing ulcers, HSV infection is known to affect deeper tissue layers. In addition, HSV infection can recur after initially successful cell therapies. Our aim was to study the response of adipose-derived MSCs (ADMSCs) to HSV infection in vitro. After confirming the phenotype and differentiation capacity of the isolated cells, we infected the cells in vitro with HSV1-KOS, HSV1-532 and HSV2 virus strains. Twenty-four hours after infection, we examined the gene expression of the cells via RNA-seq and RT-PCR; detected secreted cytokines via protein array; and determined autophagy via Western blot, transmission electron microscopy (TEM) and fluorescence microscopy. Infection with different HSV strains resulted in different gene-expression patterns. In addition to the activation of pathways characteristic of viral infections, distinct non-immunological pathways (autophagy, tissue regeneration and differentiation) were also activated according to analyses with QIAGEN Ingenuity Pathway Analysis, Kyoto Encyclopedia of Genes and Genome and Genome Ontology Enrichment. Viral infections increased autophagy, as confirmed via TEM image analysis, and also increased levels of the microtubule-associated protein light chain 3 (LC3B) II protein. We identified significantly altered accumulation for 16 cytokines involved in tissue regeneration and inflammation. Our studies demonstrated that HSV infection can alter the viability and immunological status of ADMSCs, which may have implications for ADMSC-based cell therapies. Alterations in autophagy can affect numerous processes in MSCs, including the inhibition of tissue regeneration as well as pathological differentiation.
Collapse
Affiliation(s)
- Anikó Kun-Varga
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Barbara Gubán
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
| | - Vanda Miklós
- Biobank, University of Szeged, H-6720 Szeged, Hungary;
| | - Shahram Parvaneh
- HCEMM-SZTE Skin Research Group, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (Z.B.-C.)
| | - Melinda Guba
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Diána Szűcs
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Monostori
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - János Varga
- Dermatosurgery and Plastic Surgery Unit, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (J.V.); (Á.V.)
| | - Ákos Varga
- Dermatosurgery and Plastic Surgery Unit, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (J.V.); (Á.V.)
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, H-6720 Szeged, Hungary;
| | - Zsuzsanna Bata-Csörgő
- HCEMM-SZTE Skin Research Group, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (Z.B.-C.)
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- HCEMM-SZTE Skin Research Group, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (Z.B.-C.)
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Klára Megyeri
- Department of Medical Microbiology, University of Szeged, H-6720 Szeged, Hungary;
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- Biobank, University of Szeged, H-6720 Szeged, Hungary;
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Ah-Pine F, Khettab M, Bedoui Y, Slama Y, Daniel M, Doray B, Gasque P. On the origin and development of glioblastoma: multifaceted role of perivascular mesenchymal stromal cells. Acta Neuropathol Commun 2023; 11:104. [PMID: 37355636 PMCID: PMC10290416 DOI: 10.1186/s40478-023-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023] Open
Abstract
Glioblastoma, IDH wild-type is the most common and aggressive form of glial tumors. The exact mechanisms of glioblastoma oncogenesis, including the identification of the glioma-initiating cell, are yet to be discovered. Recent studies have led to the hypothesis that glioblastoma arises from neural stem cells and glial precursor cells and that cell lineage constitutes a key determinant of the glioblastoma molecular subtype. These findings brought significant advancement to the comprehension of gliomagenesis. However, the cellular origin of glioblastoma with mesenchymal molecular features remains elusive. Mesenchymal stromal cells emerge as potential glioblastoma-initiating cells, especially with regard to the mesenchymal molecular subtype. These fibroblast-like cells, which derive from the neural crest and reside in the perivascular niche, may underlie gliomagenesis and exert pro-tumoral effects within the tumor microenvironment. This review synthesizes the potential roles of mesenchymal stromal cells in the context of glioblastoma and provides novel research avenues to better understand this lethal disease.
Collapse
Affiliation(s)
- F. Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - M. Khettab
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - Y. Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - Y. Slama
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
| | - M. Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service de Médecine d’Urgences-SAMU-SMUR, CHU de La Réunion - Site Félix Guyon, Allée Des Topazes CS 11 021, 97400 Saint-Denis, France
| | - B. Doray
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service de Génétique, CHU de La Réunion - Site Félix Guyon, Allée Des Topazes CS 11 021, 97400 Saint-Denis, France
| | - P. Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
| |
Collapse
|
5
|
Pan Y, Tang L, Dong S, Xu M, Li Q, Zhu G. Exosomes from Hair Follicle Epidermal Neural Crest Stem Cells Promote Acellular Nerve Allografts to Bridge Rat Facial Nerve Defects. Stem Cells Dev 2023; 32:1-11. [PMID: 36453239 DOI: 10.1089/scd.2022.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Previous studies showed that acellular nerve allografts (ANAs) have been successfully utilized in repairing peripheral nerve defects, and exosomes produced by stem cells are useful in supporting axon regrowth after peripheral nerve injury. In this study, exosomes from hair follicle epidermal neural crest stem cells (EPI-NCSCs-Exos) combined with ANAs were used to bridge facial nerve defects. EPI-NCSCs-Exos were isolated by ultracentrifuge, and were identified. After coculture, EPI-NCSCs-Exos were internalized into dorsal root ganglions (DRGs) and schwann cells (SCs) in vitro, respectively. EPI-NCSCs-Exos elongate the length of axons and dendrites of DRGs, and accelerated the proliferation and migration of SCs, and increased neurotrophic factor expression of SCs as well. The next step was to assign 24 Sprague Dawley male rats randomly and equally into three groups: the autograft group, the ANA group, and the ANA + EPI-NCSCs-Exos group. Each rat manufactured a 5-mm gap of facial nerve defect and immediately bridged by the corresponding transplants, respectively. After surgery, behavioral changes and electrophysiological testing of each rat were observed and assessed. At 90 days postoperatively, the retrogradely fluorescent tracer-labeled neurons were successfully observed on the injured side in the three groups. Morphological changes of facial nerve regeneration were evaluated by transmission electron microscopy and semithin toluidine blue staining. The results showed that nerve fiber density, nerve fiber diameter, and myelin sheath thickness in the ANA group were significantly worse than those in the other two groups (P < 0.05). No significant difference in nerve fiber density and myelin sheath thickness was observed between the autograft group and the ANA + EPI-NCSCs-Exos group (P = 0.14; P = 0.23). Our data indicated that EPI-NCSCs-Exos facilitate ANAs to bridge facial nerve defects and have the potential to replace autograft therapy in clinic.
Collapse
Affiliation(s)
- Yao Pan
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Li Tang
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Shuxian Dong
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Mengjie Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Nantong University Affiliated Wuxi Clinical College, Wuxi, Jiangsu, China
| | - Qiong Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Guochen Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Nantong University Affiliated Wuxi Clinical College, Wuxi, Jiangsu, China
| |
Collapse
|