1
|
Jeffries DL, Lawson-Handley L, Lamatsch DK, Olsén KH, Sayer CD, Hänfling B. Towards the conservation of the crucian carp in Europe: Prolific hybridization but no evidence for introgression between native and non-native taxa. Mol Ecol 2024; 33:e17515. [PMID: 39212263 DOI: 10.1111/mec.17515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/02/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Hybridization plays a pivotal role in evolution, influencing local adaptation and speciation. However, it can also reduce biodiversity, which is especially damaging when native and non-native species meet. Hybridization can threaten native species via competition (with vigorous hybrids), reproductive resource wastage and gene introgression. The latter, in particular, could result in increased fitness in invasive species, decreased fitness of natives and compromise reintroduction or recovery conservation practices. In this study, we use a combination of RAD sequencing and microsatellites for a range-wide sample set of 1366 fish to evaluate the potential for hybridization and introgression between native crucian carp (Carassius carassius) and three non-native taxa (Carassius auratus auratus, Carassius auratus gibelio and Cyprinus carpio) in European water bodies. We found hybridization between native and non-native taxa in 82% of populations with non-natives present, highlighting the potential for substantial ecological impacts from hybrids on crucian carp populations. However, despite such high rates of hybridization, we could find no evidence of introgression between these taxa. The presence of triploid backcrosses in at least two populations suggests that the lack of introgression among these taxa is likely due to meiotic dysfunction in hybrids, leading to the production of polyploid offspring which are unable to reproduce sexually. This result is promising for crucian reintroduction programs, as it implies limited risk to the genetic integrity of source populations. Future research should investigate the reproductive potential of triploid hybrids and the ecological pressures hybrids impose on C. carassius.
Collapse
Affiliation(s)
- Daniel L Jeffries
- Evolutionary Biology Group, School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, UK
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Lori Lawson-Handley
- Evolutionary Biology Group, School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, UK
| | - Dunja K Lamatsch
- Universität Innsbruck, Research Department for Limnology, Mondsee, Austria
| | - K Håkan Olsén
- School of Natural Sciences, Technology and Environmental Studies, Södetörn University, Huddinge, Stockholm, Sweden
| | - Carl D Sayer
- Pond Restoration Research Group, Department of Geography, University College London, London, UK
| | - Bernd Hänfling
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, Inverness, UK
| |
Collapse
|
2
|
Jacques F, Tichopád T, Demko M, Bystrý V, Křížová KC, Seifertová M, Voříšková K, Fuad MMH, Vetešník L, Šimková A. Reproduction-associated pathways in females of gibel carp (Carassius gibelio) shed light on the molecular mechanisms of the coexistence of asexual and sexual reproduction. BMC Genomics 2024; 25:548. [PMID: 38824502 PMCID: PMC11144346 DOI: 10.1186/s12864-024-10462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
Gibel carp (Carassius gibelio) is a cyprinid fish that originated in eastern Eurasia and is considered as invasive in European freshwater ecosystems. The populations of gibel carp in Europe are mostly composed of asexually reproducing triploid females (i.e., reproducing by gynogenesis) and sexually reproducing diploid females and males. Although some cases of coexisting sexual and asexual reproductive forms are known in vertebrates, the molecular mechanisms maintaining such coexistence are still in question. Both reproduction modes are supposed to exhibit evolutionary and ecological advantages and disadvantages. To better understand the coexistence of these two reproduction strategies, we performed transcriptome profile analysis of gonad tissues (ovaries) and studied the differentially expressed reproduction-associated genes in sexual and asexual females. We used high-throughput RNA sequencing to generate transcriptomic profiles of gonadal tissues of triploid asexual females and males, diploid sexual males and females of gibel carp, as well as diploid individuals from two closely-related species, C. auratus and Cyprinus carpio. Using SNP clustering, we showed the close similarity of C. gibelio and C. auratus with a basal position of C. carpio to both Carassius species. Using transcriptome profile analyses, we showed that many genes and pathways are involved in both gynogenetic and sexual reproduction in C. gibelio; however, we also found that 1500 genes, including 100 genes involved in cell cycle control, meiosis, oogenesis, embryogenesis, fertilization, steroid hormone signaling, and biosynthesis were differently expressed in the ovaries of asexual and sexual females. We suggest that the overall downregulation of reproduction-associated pathways in asexual females, and their maintenance in sexual ones, allows the populations of C. gibelio to combine the evolutionary and ecological advantages of the two reproductive strategies. However, we showed that many sexual-reproduction-related genes are maintained and expressed in asexual females, suggesting that gynogenetic gibel carp retains the genetic toolkits for meiosis and sexual reproduction. These findings shed new light on the evolution of this asexual and sexual complex.
Collapse
Affiliation(s)
- Florian Jacques
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.
| | - Tomáš Tichopád
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CAS, Liběchov, 277 21, Czech Republic
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - Martin Demko
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Vojtěch Bystrý
- Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Kristína Civáňová Křížová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Mária Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Kristýna Voříšková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Md Mehedi Hasan Fuad
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Lukáš Vetešník
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Science, Květná 8, Brno, 603 65, Czech Republic
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
3
|
Fornaini NR, Černohorská H, do Vale Martins L, Knytl M. Cytogenetic Analysis of the Fish Genus Carassius Indicates Divergence, Fission, and Segmental Duplication as Drivers of Tandem Repeat and Microchromosome Evolution. Genome Biol Evol 2024; 16:evae028. [PMID: 38340334 PMCID: PMC11079324 DOI: 10.1093/gbe/evae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Fishes of the genus Carassius are useful experimental vertebrate models for the study of evolutionary biology and cytogenetics. Carassius demonstrates diverse biological characteristics, such as variation in ploidy levels and chromosome numbers, and presence of microchromosomes. Those Carassius polyploids with ≥150 chromosomes have microchromosomes, but the origin of microchromosomes, especially in European populations, is unknown. We used cytogenetics to study evolution of tandem repeats (U1 and U2 small nuclear DNAs and H3 histone) and microchromosomes in Carassius from the Czech Republic. We tested the hypotheses whether the number of tandem repeats was affected by polyploidization or divergence between species and what mechanism drives evolution of microchromosomes. Tandem repeats were found in tetraploid and hexaploid Carassius gibelio, and tetraploid Carassius auratus and Carassius carassius in conserved numbers, with the exception of U1 small nuclear DNA in C. auratus. This conservation indicates reduction and/or loss in the number of copies per locus in hexaploids and may have occurred by divergence rather than polyploidization. To study the evolution of microchromosomes, we used the whole microchromosome painting probe from hexaploid C. gibelio and hybridized it to tetraploid and hexaploid C. gibelio, and tetraploid C. auratus and C. carassius. Our results revealed variation in the number of microchromosomes in hexaploids and indicated that the evolution of the Carassius karyotype is governed by macrochromosome fissions followed by segmental duplication in pericentromeric areas. These are potential mechanisms responsible for the presence of microchromosomes in Carassius hexaploids. Differential efficacy of one or both of these mechanisms in different tetraploids could ensure variability in chromosome number in polyploids in general.
Collapse
Affiliation(s)
- Nicola R Fornaini
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Halina Černohorská
- Genetics and Reproductive Biotechnologies, CEITEC—Veterinary Research Institute, Brno 62100, Czech Republic
| | | | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
- Department of Biology, McMaster University, Hamilton, Ontario L8S4K1, Canada
| |
Collapse
|
4
|
Lu M, Zhou L, Gui JF. Evolutionary mechanisms and practical significance of reproductive success and clonal diversity in unisexual vertebrate polyploids. SCIENCE CHINA. LIFE SCIENCES 2024; 67:449-459. [PMID: 38198030 DOI: 10.1007/s11427-023-2486-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 01/11/2024]
Abstract
Unisexual reproduction is generally relevant to polyploidy, and unisexual vertebrates are often considered an evolutionary "dead end" due to the accumulation of deleterious mutations and absence of genetic diversity. However, some unisexual polyploids have developed strategies to avoid genomic decay, and thus provide ideal models to unveil unexplored evolutionary mechanisms, from the reproductive success to clonal diversity creation. This article reviews the evolutionary mechanisms for overcoming meiotic barrier and generating genetic diversity in unisexual vertebrates, and summarizes recent research advancements in the polyploid Carassius complex. Gynogenetic gibel carp (Carassius gibelio) is a unique amphitriploid that has undergone a recurrent autotriploidy and has overcome the bottleneck of triploid sterility via gynogenesis. Recently, an efficient strategy in which ploidy changes, including from amphitriploid to amphitetraploid, then from amphitetraploid to novel amphitriploid, drive unisexual-sexual-unisexual reproduction transition and clonal diversity has been revealed. Based on this new discovery, multigenomic reconstruction biotechnology has been used to breed a novel strain with superior growth and stronger disease resistance. Moreover, a unique reproduction mode that combines both abilities of ameiotic oogenesis and sperm-egg fusion, termed as ameio-fusiongensis, has been discovered, and it provides an efficient approach to synthesize sterile allopolyploids. In order to avoid ecological risks upon escape and protect the sustainable property rights of the aquaculture seed industry, a controllable fertility biotechnology approach for precise breeding is being developed by integrating sterile allopolyploid synthesis and gene-editing techniques. This review provides novel insights into the origin and evolution of unisexual vertebrates and into the attempts being made to exploit new breeding biotechnologies in aquaculture.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Leung K, van de Zande L, Beukeboom LW. Effects of polyploidization and their evolutionary implications are revealed by heritable polyploidy in the haplodiploid wasp Nasonia vitripennis. PLoS One 2023; 18:e0288278. [PMID: 37917617 PMCID: PMC10621845 DOI: 10.1371/journal.pone.0288278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/23/2023] [Indexed: 11/04/2023] Open
Abstract
Recurrent polyploidization occurred in the evolutionary history of most Eukaryota. However, how neopolyploid detriment (sterility, gigantism, gene dosage imbalances) has been overcome and even been bridged to evolutionary advantage (gene network diversification, mass radiation, range expansion) is largely unknown, particularly for animals. We used the parasitoid wasp Nasonia vitripennis, a rare insect system with heritable polyploidy, to begin addressing this knowledge gap. In Hymenoptera the sexes have different ploidies (haploid males, diploid females) and neopolyploids (diploid males, triploid females) occur for various species. Although such polyploids are usually sterile, those of N. vitripennis are reproductively capable and can even establish stable polyploid lines. To assess the effects of polyploidization, we compared a long-established polyploid line, the Whiting polyploid line (WPL) and a newly generated transformer knockdown line (tKDL) for fitness traits, absolute gene expression, and cell size and number. WPL polyploids have high male fitness and low female fecundity, while tKDL polyploids have poor male mate competition ability and high fertility. WPL has larger cells and cell number reduction, but the tKDL does not differ in this respect. Expression analyses of two housekeeping genes indicated that gene dosage is linked to sex irrespective of ploidy. Our study suggests that polyploid phenotypic variation may explain why some polyploid lineages thrive and others die out; a commonly proposed but difficult-to-test hypothesis. This documentation of diploid males (tKDL) with impaired competitive mating ability; triploid females with high fitness variation; and hymenopteran sexual dosage compensation (despite the lack of sex chromosomes) all challenges general assumptions on hymenopteran biology. We conclude that polyploidization is dependent on the duplicated genome characteristics and that genomes of different lines are unequally suited to survive diploidization. These results demonstrate the utility of N. vitripennis for delineating mechanisms of animal polyploid evolution, analogous to more advanced polyploid plant models.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Fornaini NR, Bergelová B, Gvoždík V, Černohorská H, Krylov V, Kubíčková S, Fokam EB, Badjedjea G, Evans BJ, Knytl M. Consequences of polyploidy and divergence as revealed by cytogenetic mapping of tandem repeats in African clawed frogs ( Xenopus, Pipidae). EUR J WILDLIFE RES 2023; 69:81. [PMID: 37483536 PMCID: PMC10361878 DOI: 10.1007/s10344-023-01709-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Repetitive elements have been identified in several amphibian genomes using whole genome sequencing, but few studies have used cytogenetic mapping to visualize these elements in this vertebrate group. Here, we used fluorescence in situ hybridization and genomic data to map the U1 and U2 small nuclear RNAs and histone H3 in six species of African clawed frog (genus Xenopus), including, from subgenus Silurana, the diploid Xenopus tropicalis and its close allotetraploid relative X. calcaratus and, from subgenus Xenopus, the allotetraploid species X. pygmaeus, X. allofraseri, X. laevis, and X. muelleri. Results allowed us to qualitatively evaluate the relative roles of polyploidization and divergence in the evolution of repetitive elements because our focal species include allotetraploid species derived from two independent polyploidization events - one that is relatively young that gave rise to X. calcaratus and another that is older that gave rise to the other (older) allotetraploids. Our results demonstrated conserved loci number and position of signals in the species from subgenus Silurana; allotetraploid X. calcaratus has twice as many signals as diploid X. tropicalis. However, the content of repeats varied among the other allotetraploid species. We detected almost same number of signals in X. muelleri as in X. calcaratus and same number of signals in X. pygmaeus, X. allofraseri, X. laevis as in the diploid X. tropicalis. Overall, these results are consistent with the proposal that allopolyploidization duplicated these tandem repeats and that variation in their copy number was accumulated over time through reduction and expansion in a subset of the older allopolyploids.
Collapse
Affiliation(s)
- Nicola R. Fornaini
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
| | - Barbora Bergelová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
| | - Václav Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - Halina Černohorská
- Department of Genetics and Reproduction, CEITEC - Veterinary Research Institute, Hudcova 296/70, Brno, 62100 Czech Republic
| | - Vladimír Krylov
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
| | - Svatava Kubíčková
- Department of Genetics and Reproduction, CEITEC - Veterinary Research Institute, Hudcova 296/70, Brno, 62100 Czech Republic
| | - Eric B. Fokam
- Department of Animal Biology and Conservation, University of Buea, PO Box 63, Buea, 00237 Cameroon
| | - Gabriel Badjedjea
- Department of Aquatic Ecology, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Ben J. Evans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S4K1 Canada
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S4K1 Canada
| |
Collapse
|
7
|
Lu M, Zhang QC, Zhu ZY, Peng F, Li Z, Wang Y, Li XY, Wang ZW, Zhang XJ, Zhou L, Gui JF. An efficient approach to synthesize sterile allopolyploids through the combined reproduction mode of ameiotic oogenesis and sperm-egg fusion in the polyploid Carassius complex. Sci Bull (Beijing) 2023; 68:1038-1050. [PMID: 37173259 DOI: 10.1016/j.scib.2023.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
The association between polyploidy and reproduction transition, which is an intriguing issue in evolutionary genetics, can also be exploited as an approach for genetic improvement in agriculture. Recently, we generated novel amphitriploids (NA3n) by integrating the genomes of the gynogenetic Carassius gibelio and sexual C. auratus, and found gynogenesis was recovered in most NA3n females (NA3n♀I). Here, we discovered a unique reproduction mode, termed ameio-fusiongenesis, which combines the abilities of both ameiotic oogenesis and sperm-egg fusion, in a few NA3n females (NA3n♀II). These females inherited ameiotic oogenesis to produce unreduced eggs from gynogenetic C. gibelio and sperm-egg fusion from sexual C. auratus. Subsequently, we utilized this unique reproduction mode to generate a group of synthetic alloheptaploids by crossing NA3n♀II with Megalobrama amblycephala. They contained all chromosomes of maternal NA3n♀II and a chromosomal set of paternal M. amblycephala. Intergenomic chromosome translocations between NA3n♀II and M. amblycephala were also observed in a few somatic cells. Primary oocytes of the alloheptaploid underwent severe apoptosis owing to incomplete double-strand break repair at prophase I. Although spermatocytes displayed similar chromosome behavior at prophase I, they underwent apoptosis due to chromosome separation failure at metaphase I. Therefore, the alloheptaploid females and males were all sterile. Finally, we established a sustainable clone for the large-scale production of NA3n♀II and developed an efficient approach to synthesize diverse allopolyploids containing genomes of different cyprinid species. These findings not only broaden our understanding of reproduction transition but also offer a practical strategy for polyploidy breeding and heterosis fixing.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin-Can Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Knytl M, Fornaini NR, Bergelová B, Gvoždík V, Černohorská H, Kubíčková S, Fokam EB, Evans BJ, Krylov V. Divergent subgenome evolution in the allotetraploid frog Xenopus calcaratus. Gene X 2023; 851:146974. [DOI: 10.1016/j.gene.2022.146974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
9
|
Wang J, Wang W, Li J, Zhang Y, Luo K, Han L, Xiang C, Chai M, Luo Z, Zhao R, Liu S. Formation of the synaptonemal complex in a gynogenetic allodiploid hybrid fish. Front Genet 2023; 14:998775. [PMID: 36923790 PMCID: PMC10009232 DOI: 10.3389/fgene.2023.998775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction: The correct pairing and separation of homologous chromosomes during meiosis is crucial to ensure both genetic stability and genetic diversity within species. In allodiploid organisms, synapsis often fails, leading to sterility. However, a gynogenetic allodiploid hybrid clone line (GDH), derived by crossing red crucian carp (Carassius auratus ♀) and common carp (Cyprinus carpio ♂), stably produces diploid eggs. Because the GDH line carries 100 chromosomes with 50 chromosomes from the red crucian carp (RCC; ♀, 2n = 2x = 100) and 50 chromosomes from the common carp (CC; C. carpio L., ♂, 2n = 2x = 100), it is interesting to study the mechanisms of homologous chromosome pairing during meiosis in GDH individuals. Methods: By using fluorescence in situ hybridization (FISH) with a probe specific to the red crucian carp to label homologous chromosomes, we identified the synaptonemal complex via immunofluorescence assay of synaptonemal complex protein 3 (SCP3). Results: FISH results indicated that, during early ovarian development, the GDH oogonium had two sets of chromosomes with only one set from Carassius auratus, leading to the failure formation of normal bivalents and the subsequently blocking of meiosis. This inhibition lasted at least 5 months. After this long period of inhibition, pairs of germ cells fused, doubling the chromosomes such that the oocyte contained two sets of chromosomes from each parent. After chromosome doubling at 10 months old, homologous chromosomes and the synaptonemal complex were identified. Discussion: Causally, meiosis proceeded normally and eventually formed diploid germ cells. These results further clarify the mechanisms by which meiosis proceeds in hybrids.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jihong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yirui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Linmei Han
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Caixia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mingli Chai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ziye Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
Cytomolecular Organisation of the Nuclear Genome. Int J Mol Sci 2022; 23:ijms232113028. [PMID: 36361813 PMCID: PMC9656038 DOI: 10.3390/ijms232113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022] Open
|