1
|
Childers KC, Avery NG, Estrada Alamo KA, Davulcu O, Haynes RM, Lollar P, Doering CB, Coxon CH, Spiegel PC. Structure of coagulation factor VIII bound to a patient-derived anti-C1 domain antibody inhibitor. Blood 2023; 142:197-201. [PMID: 37192299 PMCID: PMC10352601 DOI: 10.1182/blood.2023020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
The development of pathogenic antibody inhibitors against coagulation factor VIII (FVIII) occurs in ∼30% of patients with congenital hemophilia A receiving FVIII replacement therapy, as well as in all cases of acquired hemophilia A. KM33 is an anti-C1 domain antibody inhibitor previously isolated from a patient with severe hemophilia A. In addition to potently blocking FVIII binding to von Willebrand factor and phospholipid surfaces, KM33 disrupts FVIII binding to lipoprotein receptor-related protein 1 (LRP1), which drives FVIII hepatic clearance and antigen presentation in dendritic cells. Here, we report on the structure of FVIII bound to NB33, a recombinant derivative of KM33, via single-particle cryo-electron microscopy. Structural analysis revealed that the NB33 epitope localizes to the FVIII residues R2090-S2094 and I2158-R2159, which constitute membrane-binding loops in the C1 domain. Further analysis revealed that multiple FVIII lysine and arginine residues, previously shown to mediate binding to LRP1, dock onto an acidic cleft at the NB33 variable domain interface, thus blocking a putative LRP1 binding site. Together, these results demonstrate a novel mechanism of FVIII inhibition by a patient-derived antibody inhibitor and provide structural evidence for engineering FVIII with reduced LRP1-mediated clearance.
Collapse
Affiliation(s)
| | - Nathan G. Avery
- Chemistry Department, Western Washington University, Bellingham, WA
| | | | - Omar Davulcu
- Pacific Northwest Center for Cryo-EM, Oregon Health & Science University, Portland, OR
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA
| | - Rose Marie Haynes
- Pacific Northwest Center for Cryo-EM, Oregon Health & Science University, Portland, OR
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA
| | - Pete Lollar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA
- Expression Therapeutics Inc, Tucker, GA
| | - Carmen H. Coxon
- National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - P. Clint Spiegel
- Chemistry Department, Western Washington University, Bellingham, WA
| |
Collapse
|
2
|
Sarafanov AG. Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. Int J Mol Sci 2023; 24:ijms24108584. [PMID: 37239930 DOI: 10.3390/ijms24108584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Factor VIII (FVIII) is an important component of blood coagulation as its congenital deficiency results in life-threatening bleeding. Current prophylactic therapy of the disease (hemophilia A) is based on 3-4 intravenous infusions of therapeutic FVIII per week. This poses a burden on patients, demanding reduction of infusion frequency by using FVIII with extended plasma half-life (EHL). Development of these products requires understanding FVIII plasma clearance mechanisms. This paper overviews (i) an up-to-date state of the research in this field and (ii) current EHL FVIII products, including recently approved efanesoctocog alfa, for which the plasma half-life exceeds a biochemical barrier posed by von Willebrand factor, complexed with FVIII in plasma, which results in ~1 per week infusion frequency. We focus on the EHL FVIII products' structure and function, in particular related to the known discrepancy in results of one-stage clotting (OC) and chromogenic substrate (CS) assays used to assign the products' potency, dosing, and for clinical monitoring in plasma. We suggest a possible root cause of these assays' discrepancy that is also pertinent to EHL factor IX variants used to treat hemophilia B. Finally, we discuss approaches in designing future EHL FVIII variants, including those to be used for hemophilia A gene therapy.
Collapse
Affiliation(s)
- Andrey G Sarafanov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|