1
|
Mao W, Zhang H, Wang K, Geng J, Wu J. Research progress of MUC1 in genitourinary cancers. Cell Mol Biol Lett 2024; 29:135. [PMID: 39491020 PMCID: PMC11533421 DOI: 10.1186/s11658-024-00654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
MUC1 is a highly glycosylated transmembrane protein with a high molecular weight. It plays a role in lubricating and protecting mucosal epithelium, participates in epithelial cell renewal and differentiation, and regulates cell adhesion, signal transduction, and immune response. MUC1 is expressed in both normal and malignant epithelial cells, and plays an important role in the diagnosis, prognosis prediction and clinical monitoring of a variety of tumors and is expected to be a new therapeutic target. This article reviews the structural features, expression regulation mechanism, and research progress of MUC1 in the development of genitourinary cancers and its clinical applications.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Jiang Geng
- Department of Urology, Bengbu First People's Hospital, Bengbu, People's Republic of China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
2
|
Liu C, Yang L, Gao T, Yuan X, Bajinka O, Wang K. A mini-review-cancer energy reprogramming on drug resistance and immune response. Transl Oncol 2024; 49:102099. [PMID: 39163759 PMCID: PMC11380382 DOI: 10.1016/j.tranon.2024.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/06/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
With the growing interest to harness cancer metabolism and energy reprogramming, this mini review aimed to explain the metabolic programming revealing the mechanisms regarding the treatment resistance. This mini review summarized the prominent cancer metabolic reprogramming on macromolecules. In addition, metabolic reprogramming explaining immune response and treatment resistance as well as energy reprogramming mechanisms are briefly discussed. Finally, some prospects in MR for reversing cancer drug resistance are highlighted.
Collapse
Affiliation(s)
- Chengxiang Liu
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Liuxin Yang
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Tingting Gao
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Xingxing Yuan
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China.
| | - Ousman Bajinka
- School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Kuanyu Wang
- Department of General Surgery, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
3
|
Lavudi K, Nuguri SM, Pandey P, Kokkanti RR, Wang QE. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci 2024; 356:123033. [PMID: 39222837 DOI: 10.1016/j.lfs.2024.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Human ALDH comprise 19 subfamilies in which ALDH1A1, ALDH1A3, ALDH3A1, ALDH5A1, ALDH7A1, and ALDH18A1 are implicated in CSC. Studies have shown that ALDH can also be involved in drug resistance and standard chemotherapy regimens are ineffective in treating patients at the stage of disease recurrence. Existing chemotherapeutic drugs eliminate the bulk of tumors but are usually not effective against CSC which express ALDH+ population. Henceforth, targeting ALDH is convincing to treat the patient's post-relapse. Combination therapies that interlink signaling mechanisms seem promising to increase the overall disease-free survival rate. Therefore, targeting ALDH through ALDH inhibitors along with immunotherapies may create a novel platform for translational research. This review aims to fill in the gap between ALDH1 family members in relation to its cell signaling mechanisms, highlighting their potential as molecular targets to sensitize recurrent tumors and bring forward the future development concerning the current progress and draw backs. This review summarizes the role of cancer stem cells and their upregulation by maintaining the tumor microenvironment in which ALDH is specifically highlighted. It discusses the regulation of ALDH family proteins and the crosstalk between ALDH and CSC in relation to cancer metabolism. Furthermore, it establishes the correlation between ALDH involved signaling mechanisms and their specific targeted inhibitors, as well as their functional modularity, bioavailability, and mechanistic role in various cancers.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Shreya Madhav Nuguri
- Department of Food science and Technology, The Ohio State University, Columbus, OH, United States
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Qi-En Wang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
4
|
Raj A, Chandran C S, Dua K, Kamath V, Alex AT. Targeting overexpressed surface proteins: A new strategy to manage the recalcitrant triple-negative breast cancer. Eur J Pharmacol 2024; 981:176914. [PMID: 39154820 DOI: 10.1016/j.ejphar.2024.176914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous cancer that lacks all three molecular markers, Estrogen, Progesterone, and Human Epidermal Growth Factor Receptor 2 (HER2). This unique characteristic of TNBC makes it more resistant to hormonal therapy; hence, chemotherapy and surgery are preferred. Active targeting with nanoparticles is more effective in managing TNBC than a passive approach. The surface of TNBC cells overexpresses several cell-specific proteins, which can be explored for diagnostic and therapeutic purposes. Immunohistochemical analysis has revealed that TNBC cells overexpress αVβ3 integrin, Intercellular Adhesion Molecule 1 (ICAM-1), Glucose Transporter 5 (GLUT5), Transmembrane Glycoprotein Mucin 1 (MUC-1), and Epidermal Growth Factor Receptor (EGFR). These surface proteins can be targeted using ligands, such as aptamers, antibodies, and sugar molecules. Targeting the surface proteins of TNBC with ligands helps harmonize treatment and improve patient compliance. In this review, we discuss the proteins expressed, which are limited to αVβ3 integrin proteins, ICAM-1, GLUT-5, MUC1, and EGFR, on the surface of TNBC, the challenges associated with the preclinical setup of breast cancer for targeted nanoformulations, internalization techniques and their challenges, suggestions to overcome the limitations of successful translation of nanoparticles, and the possibility of ligand-conjugated nanoparticles targeting these surface receptors for a better therapeutic outcome.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Sarath Chandran C
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India, 670 503; Kerala University of Health Sciences, Thrissur, Kerala, India - 680 596.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007.
| | - Venkatesh Kamath
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| |
Collapse
|
5
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Bhattacharya A, Wang K, Penailillo J, Chan CN, Fushimi A, Yamashita N, Daimon T, Haratake N, Ozawa H, Nakashoji A, Shigeta K, Morimoto Y, Miyo M, Kufe DW. MUC1-C regulates NEAT1 lncRNA expression and paraspeckle formation in cancer progression. Oncogene 2024; 43:2199-2214. [PMID: 38802648 PMCID: PMC11226401 DOI: 10.1038/s41388-024-03068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The MUC1 gene evolved in mammals for adaptation of barrier tissues in response to infections and damage. Paraspeckles are nuclear bodies formed on the NEAT1 lncRNA in response to loss of homeostasis. There is no known intersection of MUC1 with NEAT1 or paraspeckles. Here, we demonstrate that the MUC1-C subunit plays an essential role in regulating NEAT1 expression. MUC1-C activates the NEAT1 gene with induction of the NEAT1_1 and NEAT1_2 isoforms by NF-κB- and MYC-mediated mechanisms. MUC1-C/MYC signaling also induces expression of the SFPQ, NONO and FUS RNA binding proteins (RBPs) that associate with NEAT1_2 and are necessary for paraspeckle formation. MUC1-C integrates activation of NEAT1 and RBP-encoding genes by recruiting the PBAF chromatin remodeling complex and increasing chromatin accessibility of their respective regulatory regions. We further demonstrate that MUC1-C and NEAT1 form an auto-inductive pathway that drives common sets of genes conferring responses to inflammation and loss of homeostasis. Of functional significance, we find that the MUC1-C/NEAT1 pathway is of importance for the cancer stem cell (CSC) state and anti-cancer drug resistance. These findings identify a previously unrecognized role for MUC1-C in the regulation of NEAT1, RBPs, and paraspeckles that has been co-opted in promoting cancer progression.
Collapse
Affiliation(s)
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Johany Penailillo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chi Ngai Chan
- Tissue Technologies Unit, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Breast Surgical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the JFCR, Tokyo, Japan
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masaaki Miyo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Nakashoji A, Haratake N, Bhattacharya A, Mao W, Xu K, Wang K, Daimon T, Ozawa H, Shigeta K, Fushimi A, Yamashita N, Morimoto Y, Shimokawa M, Saito S, Egloff AM, Uppaluri R, Long MD, Kufe D. Identification of MUC1-C as a Target for Suppressing Progression of Head and Neck Squamous Cell Carcinomas. CANCER RESEARCH COMMUNICATIONS 2024; 4:1268-1281. [PMID: 38619287 PMCID: PMC11092937 DOI: 10.1158/2767-9764.crc-24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
The MUC1-C protein is aberrantly expressed in adenocarcinomas of epithelial barrier tissues and contributes to their progression. Less is known about involvement of MUC1-C in the pathogenesis of squamous cell carcinomas (SCC). Here, we report that the MUC1 gene is upregulated in advanced head and neck SCCs (HNSCC). Studies of HNSCC cell lines demonstrate that the MUC1-C subunit regulates expression of (i) RIG-I and MDA5 pattern recognition receptors, (ii) STAT1 and IFN regulatory factors, and (iii) downstream IFN-stimulated genes. MUC1-C integrates chronic activation of the STAT1 inflammatory pathway with induction of the ∆Np63 and SOX2 genes that are aberrantly expressed in HNSCCs. In extending those dependencies, we demonstrate that MUC1-C is necessary for NOTCH3 expression, self-renewal capacity, and tumorigenicity. The findings that MUC1 associates with ∆Np63, SOX2 and NOTCH3 expression by single-cell RNA sequencing analysis further indicate that MUC1-C drives the HNSCC stem cell state and is a target for suppressing HNSCC progression. SIGNIFICANCE This work reports a previously unrecognized role for MUC1-C in driving STAT1-mediated chronic inflammation with the progression of HNSCC and identifies MUC1-C as a druggable target for advanced HNSCC treatment.
Collapse
Affiliation(s)
- Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Weipu Mao
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kangjie Xu
- Central Laboratory Department, Binhai County People's Hospital, Yancheng, P.R. China
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shin Saito
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ann Marie Egloff
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ravindra Uppaluri
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Bourdon E, Swierczewski T, Goujon M, Boukrout N, Fellah S, Van der Hauwaert C, Larrue R, Lefebvre B, Van Seuningen I, Cauffiez C, Pottier N, Perrais M. MUC1 Drives the Progression and Chemoresistance of Clear Cell Renal Carcinomas. Cancers (Basel) 2024; 16:391. [PMID: 38254882 PMCID: PMC10814283 DOI: 10.3390/cancers16020391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
While the transmembrane glycoprotein mucin 1 (MUC1) is clustered at the apical borders of normal epithelial cells, with transformation and loss of polarity, MUC1 is found at high levels in the cytosol and is uniformly distributed over the entire surface of carcinoma cells, where it can promote tumor progression and adversely affects the response to therapy. Clear cell renal cell carcinoma (ccRCC), the main histotype of kidney cancer, is typically highly resistant to conventional and targeted therapies for reasons that remain largely unknown. In this context, we investigated whether MUC1 also plays a pivotal role in the cellular and molecular events driving ccRCC progression and chemoresistance. We showed, using loss- and gain-of-function approaches in ccRCC-derived cell lines, that MUC1 not only influences tumor progression but also induces a multi-drug-resistant profile reminiscent of the activation of ABC drug efflux transporters. Overall, our results suggest that targeting MUC1 may represent a novel therapeutic approach to limit ccRCC progression and improve drug sensitivity.
Collapse
Affiliation(s)
- Emma Bourdon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Thomas Swierczewski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Marine Goujon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France
| | - Bruno Lefebvre
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR-S1172, Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000 Lille, France;
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR-S1172, Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000 Lille, France;
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| |
Collapse
|
9
|
Daimon T, Bhattacharya A, Wang K, Haratake N, Nakashoji A, Ozawa H, Morimoto Y, Yamashita N, Kosaka T, Oya M, Kufe DW. MUC1-C is a target of salinomycin in inducing ferroptosis of cancer stem cells. Cell Death Discov 2024; 10:9. [PMID: 38182558 PMCID: PMC10770371 DOI: 10.1038/s41420-023-01772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
The oncogenic MUC1-C transmembrane protein is a critical effector of the cancer stem cell (CSC) state. Addiction to MUC1-C for self-renewal in the progression of human cancers has emphasized the need for development of anti-MUC1-C agents. However, there are presently no approved small molecules for targeting MUC1-C-dependent CSCs. In screening for small molecules, we identified salinomycin (SAL), an inducer of ferroptosis, as a potent inhibitor of MUC1-C signaling. We demonstrate that SAL suppresses MUC1-C expression by disrupting a NF-κB/MUC1-C auto-inductive circuit that is necessary for ferroptosis resistance. Our results show that SAL-induced MUC1-C suppression downregulates a MUC1-C→MYC pathway that activates genes encoding (i) glutathione-disulfide reductase (GSR), and (ii) the LDL receptor related protein 8 (LRP8), which inhibit ferroptosis by generating GSH and regulating selenium levels, respectively. GSR and LRP8 contribute to the function of glutathione peroxidase 4 (GPX4), an essential negative regulator of ferroptotic cell death. We demonstrate that targeting MUC1-C genetically or with the GO-203 peptide inhibitor suppresses GPX4 expression and GPX activity in association with the induction of ferroptosis. Studies of CSCs enriched by serial passage as tumorspheres further demonstrate that the effects of SAL are mediated by downregulation of MUC1-C and thereby overcoming resistance to ferroptosis. As confirmation of these results, rescue of MUC1-C downregulation with the MUC1-C cytoplasmic domain (i) reversed the suppression of GSR, LRP8 and GPX4 expression, and (ii) attenuated the induction of ferroptosis. These findings identify SAL as a unique small molecule inhibitor of MUC1-C signaling and demonstrate that MUC1-C is an important effector of resistance to ferroptosis.
Collapse
Affiliation(s)
- Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Kinan Hospital, Wakayama, Japan
| | - Nami Yamashita
- Breast Surgical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the JFCR, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Yamashita N, Withers H, Morimoto Y, Bhattacharya A, Haratake N, Daimon T, Fushimi A, Nakashoji A, Thorner AR, Isenhart E, Rosario S, Long MD, Kufe D. MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells. iScience 2023; 26:108168. [PMID: 37915591 PMCID: PMC10616323 DOI: 10.1016/j.isci.2023.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolytic pathway genes with self-renewal and tumorigenicity. MUC1-C further integrates the glycolytic pathway with suppression of mitochondrial DNA (mtDNA) genes encoding components of mitochondrial Complexes I-V. The repression of mtDNA genes is explained by MUC1-C-mediated (i) downregulation of the mitochondrial transcription factor A (TFAM) required for mtDNA transcription and (ii) induction of the mitochondrial transcription termination factor 3 (mTERF3). In support of pathogenesis that suppresses mitochondrial ROS production, targeting MUC1-C increases (i) mtDNA gene transcription, (ii) superoxide levels, and (iii) loss of self-renewal capacity. These findings and scRNA-seq analysis of CSC subpopulations indicate that MUC1-C regulates self-renewal and redox balance by integrating activation of glycolysis with suppression of oxidative phosphorylation.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Henry Withers
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aaron R. Thorner
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Emily Isenhart
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer Rosario
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Shokrollahi Barough M, Jalili N, Shafiee S, Salehi M, Naseri N, Javidi MA, Hosseinzadeh A, Farahmand L. Anti-MUC1 nanobody can synergize the Tamoxifen and Herceptin effects on breast cancer cells by inducing ER, PR and HER2 overexpression. Int Immunopharmacol 2023; 124:110792. [PMID: 37633239 DOI: 10.1016/j.intimp.2023.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
INTRODUCTION One of the most pressing concerns associated with breast cancer-targeted therapies is resistance to Tamoxifen and Herceptin. Such drug resistance is usually characterized by reduced expression of certain cell surface receptors. Some biological regimens can induce perceptible overexpression of these receptors in favor of drug responsiveness. MATERIAL AND METHODS In this research, drug-responsive MCF-7 and SKBR-3, along with drug-resistant MCF-7R (Tamoxifen resistant) and JIMT-1 (Herceptin resistant) breast cancer cell lines in 2D and 3D cultures were exposed to anti-MUC1 nanobody and then assessed for their ER, PR, and HER2 gene and protein expression using qRT-PCR and immunofluorescent staining analyses. Cell viability and the synergistic relationships of combination treatments were determined with MTT assay followed by CompuSyn software. Apoptotic cells were evaluated with Annexin V/propidium Iodide (PI) and acridine orange/ethidium bromide (AO/EB) staining. RESULTS Anti-MUC1 exposure elevated the expression levels of ER (42 folds), PR (18.5 folds), and HER2 (4.7 folds). As a result of co-treatment, the IC50 levels for Tamoxifen and Herceptin were reduced by up to 10 and 3 folds, respectively. MCF-7R cells responded positively to Tamoxifen, as evidenced by a 5-fold reduction in the IC50 and enhanced apoptosis. CONCLUSION The ER, PR, and HER2 overexpression after MUC1 blocking could signal drug hypersensitization and facilitate drug resistance management.
Collapse
Affiliation(s)
- Mahdieh Shokrollahi Barough
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran; Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Immunology, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Neda Jalili
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Soodabe Shafiee
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nazanin Naseri
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Amin Javidi
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Aysooda Hosseinzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
12
|
Bhattacharya A, Fushimi A, Wang K, Yamashita N, Morimoto Y, Ishikawa S, Daimon T, Liu T, Liu S, Long MD, Kufe D. MUC1-C intersects chronic inflammation with epigenetic reprogramming by regulating the set1a compass complex in cancer progression. Commun Biol 2023; 6:1030. [PMID: 37821650 PMCID: PMC10567710 DOI: 10.1038/s42003-023-05395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic inflammation promotes epigenetic reprogramming in cancer progression by pathways that remain unclear. The oncogenic MUC1-C protein is activated by the inflammatory NF-κB pathway in cancer cells. There is no known involvement of MUC1-C in regulation of the COMPASS family of H3K4 methyltransferases. We find that MUC1-C regulates (i) bulk H3K4 methylation levels, and (ii) the COMPASS SET1A/SETD1A and WDR5 genes by an NF-κB-mediated mechanism. The importance of MUC1-C in regulating the SET1A COMPASS complex is supported by the demonstration that MUC1-C and WDR5 drive expression of FOS, ATF3 and other AP-1 family members. In a feedforward loop, MUC1-C, WDR5 and AP-1 contribute to activation of genes encoding TRAF1, RELB and other effectors in the chronic NF-κB inflammatory response. We also show that MUC1-C, NF-κB, WDR5 and AP-1 are necessary for expression of the (i) KLF4 master regulator of the pluripotency network and (ii) NOTCH1 effector of stemness. In this way, MUC1-C/NF-κB complexes recruit SET1A/WDR5 and AP-1 to enhancer-like signatures in the KLF4 and NOTCH1 genes with increases in H3K4me3 levels, chromatin accessibility and transcription. These findings indicate that MUC1-C regulates the SET1A COMPASS complex and the induction of genes that integrate NF-κB-mediated chronic inflammation with cancer progression.
Collapse
Affiliation(s)
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Satoshi Ishikawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Li Z, Guo T, Zhao S, Lin M. The Therapeutic Effects of MUC1-C shRNA@Fe 3O 4 Magnetic Nanoparticles in Alternating Magnetic Fields on Triple-Negative Breast Cancer. Int J Nanomedicine 2023; 18:5651-5670. [PMID: 37822991 PMCID: PMC10563812 DOI: 10.2147/ijn.s426849] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose Improving the treatment of triple-negative breast cancer (TNBC) is a serious challenge today. The primary objective of this study was to construct MUC1-C shRNA@ Fe3O4 magnetic nanoparticles (MNPs) and investigate their potential therapeutic benefits in alternating magnetic fields (AMF) on TNBC. Methods Firstly, we verified the high expression of MUC1 in TNBC and synthesized specific MUC1-C shRNA plasmids (MUC1-C shRNA). Then, we prepared and characterized MUC1-C shRNA@Fe3O4 MNPs and confirmed their MUC1-C gene silencing effect and magneto-thermal conversion ability in AMF. Moreover, the inhibitory effects on TNBC in vitro and in vivo were observed as well as biosafety. Finally, the protein levels of BCL-2-associated X protein (Bax), cleaved-caspase3, glutathione peroxidase inhibitor 4 (GPX4), nuclear factor erythroid 2-related factor 2 (NRF2), and ferritin heavy chain 1 (FTH1) in TNBC cells and tissues were examined, and it was speculated that apoptosis and ferroptosis were involved in the synergistic treatment. Results MUC1-C shRNA@ Fe3O4 MNPs have a size of ~75 nm, with an encapsulation rate of (29.78±0.63) %, showing excellent gene therapy and magnetic hyperthermia functions. Under a constant AMF (3Kw) and a set concentration (200µg mL-1), the nanoparticles could be rapidly warmed up within 20 minutes and stabilized at about 43 °C. It could be uptaken by TNBC cells through endocytosis and significantly inhibit their proliferation and migration, with a growth inhibition rate of 79.22% for TNBC tumors. After treatment, GPX4, NRF2, and FTH1 expression levels in TNBC cells and tumor tissues were suppressed, while Bax and cleaved-caspase3 were increased. As key therapeutic measures, gene therapy, and magnetic hyperthermia have shown a synergistic effect in this treatment strategy, with a combined index (q index) of 1.23. Conclusion In conclusion, we developed MUC1-C shRNA@Fe3O4 MNPs with magnetic hyperthermia and gene therapy functions, which have shown satisfactory therapeutic effects on TNBC without significant side effects. This study provides a potential option for the precision treatment of TNBC.
Collapse
Affiliation(s)
- Zhifeng Li
- Medical School of Nantong University, Nantong, Jiangsu, People’s Republic of China
- Clinical Laboratory, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| | - Ting Guo
- Research Center of Clinical Medicine, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| | - Susu Zhao
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Mei Lin
- Clinical Laboratory, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| |
Collapse
|
14
|
Wang L, Ding X, Qiu X. Mechanism of breast cancer immune microenvironment in prognosis of heart failure. Comput Biol Med 2023; 164:107339. [PMID: 37586207 DOI: 10.1016/j.compbiomed.2023.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
The treatment of breast cancer can potentially impose a burden on the heart, leading to an increased risk of heart failure. Studies have shown that more than half of breast cancer patients die from non-tumor-related causes, with cardiovascular disease (CVD) being the leading cause of death. However, the underlying mechanism linking breast cancer prognosis and heart failure remains unclear. To investigate this, we conducted an analysis where we compared the differentially expressed genes (DEGs) in early and advanced breast cancer with genes associated with heart failure. This analysis revealed 18 genes that overlapped between the two conditions, with 15 of them being related to immune function. This suggests that immune pathways may play a role in the prognosis of breast cancer patients with heart failure. Using gene expression data from 1260 breast cancer patients, we further examined the impact of these 15 genes on survival time. Additionally, through enrichment analysis, we explored the functions and pathways associated with these genes in relation to breast cancer and heart failure. By constructing a transformer model, we discovered that the expression patterns of these 15 genes can accurately predict the occurrence of heart failure. The model achieved an AUC of 0.86 and an AUPR of 0.91. Moreover, through analysis of single-cell sequencing data from breast cancer patients undergoing PD-1 treatment and experiencing heart failure, we identified a significant number of cell-type-specific genes that were shared between both diseases. This suggests that changes in gene expression in immune cells following breast cancer treatment may be associated with the development of heart failure.
Collapse
Affiliation(s)
- Lida Wang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Xiaolei Ding
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Xun Qiu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
15
|
Jin W, Zhang M, Dong C, Huang L, Luo Q. The multifaceted role of MUC1 in tumor therapy resistance. Clin Exp Med 2023; 23:1441-1474. [PMID: 36564679 DOI: 10.1007/s10238-022-00978-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Tumor therapeutic resistances are frequently linked to the recurrence and poor prognosis of cancers and have been a key bottleneck in clinical tumor treatment. Mucin1 (MUC1), a heterodimeric transmembrane glycoprotein, exhibits abnormally overexpression in a variety of human tumors and has been confirmed to be related to the formation of therapeutic resistance. In this review, the multifaceted roles of MUC1 in tumor therapy resistance are summarized from aspects of pan-cancer principles shared among therapies and individual mechanisms dependent on different therapies. Concretely, the common mechanisms of therapy resistance across cancers include interfering with gene expression, promoting genome instability, modifying tumor microenvironment, enhancing cancer heterogeneity and stemness, and activating evasion and metastasis. Moreover, the individual mechanisms of therapy resistance in chemotherapy, radiotherapy, and biotherapy are introduced. Last but not least, MUC1-involved therapy resistance in different types of cancers and MUC1-related clinical trials are summarized.
Collapse
Affiliation(s)
- Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengwei Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Changzi Dong
- Department of Bioengineering, School of Engineering and Science, University of Pennsylvania, Philadelphia, 19104, USA
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, China.
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
16
|
Pratelli G, Carlisi D, Di Liberto D, Notaro A, Giuliano M, D'Anneo A, Lauricella M, Emanuele S, Calvaruso G, De Blasio A. MCL1 Inhibition Overcomes the Aggressiveness Features of Triple-Negative Breast Cancer MDA-MB-231 Cells. Int J Mol Sci 2023; 24:11149. [PMID: 37446326 DOI: 10.3390/ijms241311149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is a particularly aggressive subtype among breast cancers (BCs), characterized by anoikis resistance, high invasiveness, and metastatic potential as well as Epithelial-Mesenchymal Transition (EMT) and stemness features. In the last few years, our research focused on the function of MCL1, an antiapoptotic protein frequently deregulated in TNBC. Here, we demonstrate that MCL1 inhibition by A-1210477, a specific BH3-mimetic, promotes anoikis/apoptosis in the MDA-MB-231 cell line, as shown via an increase in proapoptotic markers and caspase activation. Our evidence also shows A-1210477 effects on Focal Adhesions (FAs) impairing the integrin trim and survival signaling pathways, such as FAK, AKT, ERK, NF-κB, and GSK3β-inducing anoikis, thus suggesting a putative role of MCL1 in regulation of FA dynamics. Interestingly, in accordance with these results, we observed a reduction in migratory and invasiveness capabilities as confirmed by a decrease in metalloproteinases (MMPs) levels following A-1210477 treatment. Moreover, MCL1 inhibition promotes a reduction in EMT characteristics as demonstrated by the downregulation of Vimentin, MUC1, DNMT1, and a surprising re-expression of E-Cadherin, suggesting a possible mesenchymal-like phenotype reversion. In addition, we also observed the downregulation of stemness makers such as OCT3/4, SOX2, NANOG, as well as CD133, EpCAM, and CD49f. Our findings support the idea that MCL1 inhibition in MDA-MB-231 could be crucial to reduce anoikis resistance, aggressiveness, and metastatic potential and to minimize EMT and stemness features that distinguish TNBC.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Department of Physics and Chemistry (DiFC)-Emilio Segrè, University of Palermo, 90128 Palermo, Italy
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonella D'Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Calvaruso
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
17
|
He Q, Hu H, Yang F, Song D, Zhang X, Dai X. Advances in chimeric antigen receptor T cells therapy in the treatment of breast cancer. Biomed Pharmacother 2023; 162:114609. [PMID: 37001182 DOI: 10.1016/j.biopha.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring cancer type seriously threatening the lives of women worldwide. Clinically, the high frequency of diverse resistance to current therapeutic strategies advocates a demand to develop novel and effective approaches for the efficient treatment of BC. The chimeric antigen receptor T (CAR-T) cells therapy, one of the immunotherapies, has displayed powerful capacity to specifically kill and eliminate tumors. Due to the success of CAR-T therapy achieved in treating hematological malignancy, the effect of CAR-T cells therapy has been tested in various human diseases including breast cancer. This review summarized and discussed the landscape of the CAR-T therapy for breast cancer, including the advances, challenge and countermeasure of CAR-T therapy in research and clinical application. The roles of potential antigen targets, tumor microenvironment, immune escape in regulating CAR-T therapy, the combination of CAR-T therapy with other therapeutic strategies to further enhance therapeutic efficacy of CAR-T treatment were also highlighted. Therefore, our review provided a comprehensive understanding of CAR-T cell therapy in breast cancer which will awake huge interests for future in-depth investigation of CAR-T based therapy in cancer treatment.
Collapse
|
18
|
Yamashita N, Morimoto Y, Fushimi A, Ahmad R, Bhattacharya A, Daimon T, Haratake N, Inoue Y, Ishikawa S, Yamamoto M, Hata T, Akiyoshi S, Hu Q, Liu T, Withers H, Liu S, Shapiro GI, Yoshizumi T, Long MD, Kufe D. MUC1-C Dictates PBRM1-Mediated Chronic Induction of Interferon Signaling, DNA Damage Resistance, and Immunosuppression in Triple-Negative Breast Cancer. Mol Cancer Res 2023; 21:274-289. [PMID: 36445328 PMCID: PMC9975675 DOI: 10.1158/1541-7786.mcr-22-0772] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The polybromo-1 (PBRM1) chromatin-targeting subunit of the SWI/SNF PBAF chromatin remodeling complex drives DNA damage resistance and immune evasion in certain cancer cells through mechanisms that remain unclear. STAT1 and IRF1 are essential effectors of type I and II IFN pathways. Here, we report that MUC1-C is necessary for PBRM1 expression and that it forms a nuclear complex with PBRM1 in triple-negative breast cancer (TNBC) cells. Analysis of global transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) profiles further demonstrated that MUC1-C and PBRM1 drive STAT1 and IRF1 expression by increasing chromatin accessibility of promoter-like signatures (PLS) on their respective genes. We also found that MUC1-C, PBRM1, and IRF1 increase the expression and chromatin accessibility on PLSs of the (i) type II IFN pathway IDO1 and WARS genes and (ii) type I IFN pathway RIG-I, MDA5, and ISG15 genes that collectively contribute to DNA damage resistance and immune evasion. In support of these results, targeting MUC1-C in wild-type BRCA TNBC cells enhanced carboplatin-induced DNA damage and the loss of self-renewal capacity. In addition, MUC1-C was necessary for DNA damage resistance, self-renewal, and tumorigenicity in olaparib-resistant BRCA1-mutant TNBC cells. Analysis of TNBC tumors corroborated that (i) MUC1 and PBRM1 are associated with decreased responsiveness to chemotherapy and (ii) MUC1-C expression is associated with the depletion of tumor-infiltrating lymphocytes (TIL). These findings demonstrate that MUC1-C activates PBRM1, and thereby chromatin remodeling of IFN-stimulated genes that promote chronic inflammation, DNA damage resistance, and immune evasion. IMPLICATIONS MUC1-C is necessary for PBRM1-driven chromatin remodeling in chronic activation of IFN pathway genes that promote DNA damage resistance and immunosuppression.
Collapse
Affiliation(s)
- Nami Yamashita
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Atsushi Fushimi
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Rehan Ahmad
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tatsuaki Daimon
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Naoki Haratake
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Yuka Inoue
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Ishikawa
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Masaaki Yamamoto
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hata
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Sayuri Akiyoshi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Qiang Hu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Henry Withers
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Corresponding Authors: Donald Kufe, Dana-Farber Cancer Institute, 450 Brookline Avenue, D830, Boston, MA 02215. E-mail: ; and Mark D. Long,
| | - Donald Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
- Corresponding Authors: Donald Kufe, Dana-Farber Cancer Institute, 450 Brookline Avenue, D830, Boston, MA 02215. E-mail: ; and Mark D. Long,
| |
Collapse
|
19
|
Morimoto Y, Yamashita N, Daimon T, Hirose H, Yamano S, Haratake N, Ishikawa S, Bhattacharya A, Fushimi A, Ahmad R, Takahashi H, Dashevsky O, Mitsiades C, Kufe D. MUC1-C is a master regulator of MICA/B NKG2D ligand and exosome secretion in human cancer cells. J Immunother Cancer 2023; 11:e006238. [PMID: 36754452 PMCID: PMC9923360 DOI: 10.1136/jitc-2022-006238] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The MUC1-C protein evolved in mammals to protect barrier tissues from loss of homeostasis; however, MUC1-C promotes oncogenesis in association with chronic inflammation. Aberrant expression of MUC1-C in cancers has been linked to depletion and dysfunction of T cells in the tumor microenvironment. In contrast, there is no known involvement of MUC1-C in the regulation of natural killer (NK) cell function. METHODS Targeting MUC1-C genetically and pharmacologically in cancer cells was performed to assess effects on intracellular and cell surface expression of the MHC class I chain-related polypeptide A (MICA) and MICB ligands. The MICA/B promoters were analyzed for H3K27 and DNA methylation. Shedding of MICA/B was determined by ELISA. MUC1-C interactions with ERp5 and RAB27A were assessed by coimmunoprecipitation and direct binding studies. Exosomes were isolated for analysis of secretion. Purified NK cells were assayed for killing of cancer cell targets. RESULTS Our studies demonstrate that MUC1-C represses expression of the MICA and MICB ligands that activate the NK group 2D receptor. We show that the inflammatory MUC1-C→NF-κB pathway drives enhancer of zeste homolog 2-mediated and DNMT-mediated methylation of the MICA and MICB promoter regions. Targeting MUC1-C genetically and pharmacologically with the GO-203 inhibitor induced intracellular and cell surface MICA/B expression but not MICA/B cleavage. Mechanistically, MUC1-C regulates the ERp5 thiol oxidoreductase that is necessary for MICA/B protease digestion and shedding. In addition, MUC1-C interacts with the RAB27A protein, which is required for exosome formation and secretion. As a result, targeting MUC1-C markedly inhibited secretion of exosomes expressing MICA/B. In concert with these results, we show that targeting MUC1-C promotes NK cell-mediated killing. CONCLUSIONS These findings uncover pleotropic mechanisms by which MUC1-C confers evasion of cancer cells to NK cell recognition and destruction.
Collapse
Affiliation(s)
- Yoshihiro Morimoto
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nami Yamashita
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tatsuaki Daimon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Japan
| | - Shizuka Yamano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Naoki Haratake
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Satoshi Ishikawa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Atsushi Fushimi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rehan Ahmad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University, Suita, Japan
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Constantine Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Donald Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Guo SS, Wang ZG. Salvianolic acid B from Salvia miltiorrhiza bunge: A potential antitumor agent. Front Pharmacol 2022; 13:1042745. [PMID: 36386172 PMCID: PMC9640750 DOI: 10.3389/fphar.2022.1042745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae) is a perennial herb widely found in China since ancient times with a high economic and medicinal value. Salvianolic acid B (Sal-B) is an important natural product derived from Salvia miltiorrhiza and this review summarizes the anticancer activity of Sal-B. Sal-B inhibits tumor growth and metastasis by targeting multiple cell signaling pathways. This review aims to review experimental studies to describe the possible anticancer mechanisms of Sal-B and confirm its potential as a therapeutic drug.
Collapse
Affiliation(s)
- Sha-Sha Guo
- Key Laboratory of Theory of TCM, Ministry of Education of China, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Guo Wang
- Key Laboratory of Theory of TCM, Ministry of Education of China, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Zhen-Guo Wang,
| |
Collapse
|
21
|
Kufe DW. Emergence of MUC1 in Mammals for Adaptation of Barrier Epithelia. Cancers (Basel) 2022; 14:cancers14194805. [PMID: 36230728 PMCID: PMC9564314 DOI: 10.3390/cancers14194805] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The mucin 1 (MUC1) gene was discovered based on its overexpression in human breast cancers. Subsequent work demonstrated that MUC1 is aberrantly expressed in cancers originating from other diverse organs, including skin and immune cells. These findings supported a role for MUC1 in the adaptation of barrier tissues to infection and environmental stress. Of fundamental importance for this evolutionary adaptation was inclusion of a SEA domain, which catalyzes autoproteolysis of the MUC1 protein and formation of a non-covalent heterodimeric complex. The resulting MUC1 heterodimer is poised at the apical cell membrane to respond to loss of homeostasis. Disruption of the complex releases the MUC1 N-terminal (MUC1-N) subunit into a protective mucous gel. Conversely, the transmembrane C-terminal (MUC1-C) subunit activates a program of lineage plasticity, epigenetic reprogramming and repair. This MUC1-C-activated program apparently evolved for barrier tissues to mount self-regulating proliferative, inflammatory and remodeling responses associated with wound healing. Emerging evidence indicates that MUC1-C underpins inflammatory adaptation of tissue stem cells and immune cells in the barrier niche. This review focuses on how prolonged activation of MUC1-C by chronic inflammation in these niches promotes the cancer stem cell (CSC) state by establishing auto-inductive nodes that drive self-renewal and tumorigenicity.
Collapse
Affiliation(s)
- Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA
| |
Collapse
|