1
|
Fu C, Fu Q, Wang S, Wu F, Jiang N, Zhou R, Yang Y, Xue Y. Genome-wide analysis of fatty acid desaturase genes in moso bamboo (Phyllostachys edulis) reveal their important roles in abiotic stresses responses. BMC Genomics 2024; 25:1138. [PMID: 39587486 PMCID: PMC11590352 DOI: 10.1186/s12864-024-11065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Bamboo is an important nontimber forestry product worldwide, while growth, development and geographic distribution of bamboo are often affected by abiotic stresses. Fatty acid desaturases have important roles in regulating plant abiotic stress tolerance, especially low-temperature. However, there is no report on genome-wide of FAD genes in bamboo under abiotic stresses. RESULTS A toltal of 43 PeFAD genes were identified in moso bamboo genome, which were unevenly located in 17 scaffolds. Phylogenetic analysis indicated that PeFAD genes were divided into 6 groups and ADS/FAD5 group was absence in momo bamboo, and gene structure and histidine-motifs remained highly conserved in each group. The expansion of PeFAD genes was mainly caused by tandem and segmental duplications of SAD/FAB2 group. We also identified 59 types of miRNAs targeting PeFAD genes. RNA-seq data indicated that PeFAD genes were transcribed in various organs/tissues with different degrees, and responded to abiotic stresses and hormone treatments, including cold, salt, drought, SA, ABA, BR, NAA and GA. Co-expression analysis under cold stress showed that PeCBF3 might directly bind the promoter of top cold-responsive PeSLD1 gene that contained LTR cis-element and DRE core element. The qRT-PCR assay also validated the expression pattern of PeSLD1 and its upstream regulatory gene PeCBF3. CONCLUSION In this study, we performed comprehensive genome-wide survey of PeFAD genes in moso bamboo and analyzed their expression patterns in various tissues and organs, and under abiotic stresses and phytohormones treatment. The qRT-PCR assay validated the cold inducibility of PeSLD1 and PeCBF3. This work showed critical roles of PeFAD genes in abiotic stresses responses. This is the first report on genome-wide analysis of PeFAD genes in moso bamboo, which will provide critical gene resources for molecular breeding of stress-toleranct moso bamboo.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan, China
| | - Qinchao Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan, China
| | - Shanshan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Fangzhou Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, Leshan, China
| | - Ruoqi Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yaojun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan, China
| | - Yufei Xue
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Shi SH, Zeeshan M, Shan WN, Qiu CW, Chen ZH, Wu F. Transcriptome and molecular evidence of HvMORF8 conferring drought-tolerance in barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109289. [PMID: 39549383 DOI: 10.1016/j.plaphy.2024.109289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Drought is one of the most devastating abiotic stresses worldwide, which severely limits crop yield. Tibetan wild barley is a treasure trove of useful genes for crop improvement including drought tolerance. Here, we detected large-scale changes of gene expression in response to drought stress with a substantial difference among contrasting Tibetan barley genotypes XZ5 (drought-tolerant), XZ54 (drought-sensitive) and cv. Tadmor (drought-tolerant). Drought stress led to upregulations of 142 genes involved in transcription, metabolism, protein synthesis, stress defense, transport and signal transduction in XZ5, but those genes were down-regulated or unchanged in XZ54 and Tadmor. We identified and functionally characterized a novel multiple organellar RNA editing factors 8 (HvMORF8), which was up-regulated by drought stress in XZ5, but unchanged in XZ54 and Tadmor under drought stress. Phylogenetic analysis showed that orthologues of HvMORF8 can be traced back to the closest gymnosperm species such as Cycas micholitzii, implicating a potential evolutionary origin for MORF8 from a common ancestor in early seed plants. Virus-induced HvMORF8 silencing in XZ5 led to hypersensitivity to drought stress, demonstrating it is a positive regulator of drought tolerance in barley. RNA sequencing of BSMV:HvMORF8 and control plants reveals that silencing of HvMORF8 suppresses genes involved in osmolytes transport, cell wall modification and antioxidants, resulting in water metabolism disorder and overaccumulation of reactive oxygen species (ROS) under drought stress. Therefore, we propose HvMORF8-mediated regulatory drought tolerance mechanisms at transcriptomic level in XZ5, providing new insight into the genetic basis of plastid RNA editing function of HvMORF8 for barley drought tolerance.
Collapse
Affiliation(s)
- Shou-Heng Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Zeeshan
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Wu-Nian Shan
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, PR China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
3
|
Xue Y, Wang S, Zhang Q, Wu F, Huang L, Qin S, Zhang M, Yang X, Deng Z, Jiang H, Li L, Chai Y. Brassica napus cytochrome P450 superfamily: Origin from parental species and involvement in diseases resistance, abiotic stresses tolerance, and seed quality traits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116792. [PMID: 39096688 DOI: 10.1016/j.ecoenv.2024.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Cytochromes P450 monooxygenases (CYP450s) constitute the largest enzymic protein family that is widely present in plants, animals, and microorganisms, participate in numerous metabolic pathways, and play diverse roles in development, metabolism, and defense. Rapeseed (Brassica napus) is an important oil crop worldwide and have many versions of reference genome. However, there is no systemically comparative genome-wide analysis of CYP450 family genes in rapeseed and its parental species B. rapa and B. oleracea. In this study, we identified 765, 293 and 437 CYP450 genes in B. napus, B. rapa and B. oleracea, respectively, which were unevenly located in A01-A10 and/or C01-C09 chromosomes in corresponding species. Phylogenetic relationship analysis indicated that 1745 CYP450 proteins from three Brassica species and Arabidopsis were divided into 4 groups. Whole genome duplication (WGD) or segmental duplication resulted in gene expansion of CYP450 family in three Brassica species. There were 33-83 SSR loci in CYP450 genes of three Brassica species, and numerous transcription factor binding sites were identified in their promoters. A total of 459-777 miRNAs were predicted to target 174-426 CYP450 genes in three Brassica species. Based on transcriptome data, BnCYP450s, BrCYP450s and BoCYP450s were differentially expressed in various tissues. There existed numerous BnCYP450 DEGs in response to pathogens and abiotic stresses. Besides, many BnCYP450 DEGs were involved in the regulation of important traits, such as seed germination, seed ALA content, and yellow-seed. The qRT-PCR experiment confirmed the transcriptome analysis results by validating two representative Sclerotinia-responsive BnCYP450 DEGs as an example. Three BnCYP450s genes (CYP707A1, CYP81F1, CYP81H1) might be regulated by seed-specific transcription factors BnTT1 and BnbZIP67 to participate in the development and metabolism of seed coat and embryo by undertaking related metabolic reactions.
Collapse
Affiliation(s)
- Yufei Xue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Shanshan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Qiheng Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Fangzhou Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Li Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Shujun Qin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Min Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Xiao Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Zihan Deng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Huanhuan Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Lejing Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Yourong Chai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China.
| |
Collapse
|
4
|
Barashkova AS, Smirnov AN, Rogozhin EA. Complex of Defense Polypeptides of Wheatgrass ( Elytrigia elongata) Associated with Plant Immunity to Biotic and Abiotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2024; 13:2459. [PMID: 39273943 PMCID: PMC11396971 DOI: 10.3390/plants13172459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Plant defense polypeptides play a crucial role in providing plants with constitutive immunity against various biotic and abiotic stressors. In this study, we explored a complex of proteins from wheatgrass (Elytrigia elongata) spikelets to estimate their role in the plant's tolerance to various environmental factors. The current research shows that in vitro protein extracts from E. elongata spikelets possess antifungal activity against certain Fusarium species, which are specific cereal pathogens, at concentrations of 1-2 mg/mL. In this study, we reproduced these antifungal activities using a 4 mg/mL extract in artificial fungal infection experiments on wheat grain (Triticum aestivum) under controlled laboratory conditions. Furthermore, the tested extract demonstrated a protective effect on Saccharomyces cerevisiae exposed to hyper-salinity stress at a concentration of 2 mg/mL. A combined scheme of fractionation and structural identification was applied for the estimation of the diversity of defense polypeptides. Defensins, lipid-transfer proteins, hydrolase inhibitors (cereal bifunctional trypsin/alpha-amylase inhibitors from a Bowman-Birk trypsin inhibitor), and high-molecular-weight disease resistance proteins were isolated from the extract. Thus, wheatgrass spikelets appear to be a reservoir of defense polypeptides. Our findings contribute to a deeper understanding of plant defense proteins and peptides and their involvement in the adaptation to various stress factors, and they reveal the regulatory effect at the ecosystem level.
Collapse
Affiliation(s)
- Anna S Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
| | - Alexey N Smirnov
- Department of Plant Protection, Institute of Agrobiotechnology, Timiryazev Russian State Agrarian University, 127550 Moscow, Russia
| | - Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| |
Collapse
|
5
|
Xiao Y, Xiao C, He X, Yang X, Tong Z, Wang Z, Sun Z, Qiu W. A Novel Non-Specific Lipid Transfer Protein Gene, CmnsLTP6.9, Enhanced Osmotic and Drought Tolerance by Regulating ROS Scavenging and Remodeling Lipid Profiles in Chinese Chestnut ( Castanea mollissima Blume). PLANTS (BASEL, SWITZERLAND) 2023; 12:3916. [PMID: 38005813 PMCID: PMC10675601 DOI: 10.3390/plants12223916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Chestnut (Castanea mollissima Blume) is an important economic tree owing to its tasty fruit and adaptability to environmental stresses, especially drought. Currently, there is limited information about non-specific lipid transfer protein (nsLTP) genes that respond to abiotic stress in chestnuts. Here, a chestnut nsLTP, named CmnsLTP6.9, was identified and analyzed. The results showed that the CmnsLTP6.9 protein localized in the extracellular matrix had two splicing variants (CmnsLTP6.9L and CmnsLTP6.9S). Compared with CmnsLTP6.9L, CmnsLTP6.9S had an 87 bp deletion in the 5'-terminal. Overexpression of CmnsLTP6.9L in Arabidopsis enhanced tolerance to osmotic and drought stress. Upon exposure to osmotic and drought treatment, CmnsLTP6.9L could increase reactive oxygen species (ROS)-scavenging enzyme activity, alleviating ROS damage. However, CmnsLTP6.9S-overexpressing lines showed no significant differences in phenotype, ROS content, and related enzyme activities compared with the wild type (WT) under osmotic and drought treatment. Moreover, lipid metabolism analysis confirmed that, unlike CmnsLTP6.9S, CmnsLTP6.9L mainly altered and upregulated many fatty acyls and glycerophospholipids, which implied that CmnsLTP6.9L and CmnsLTP6.9S played different roles in lipid transference in the chestnut. Taken together, we analyzed the functions of CmnsLTP6.9L and CmnsLTP6.9S, and demonstrated that CmnsLTP6.9L enhanced drought and osmotic stress tolerance through ROS scavenging and lipid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenming Qiu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.X.); (C.X.); (X.H.); (X.Y.); (Z.T.); (Z.W.); (Z.S.)
| |
Collapse
|
6
|
Li Y, Guo L, Cui Y, Yan X, Ouyang J, Li S. Lipid transfer protein, OsLTPL18, is essential for grain weight and seed germination in rice. Gene 2023; 883:147671. [PMID: 37506985 DOI: 10.1016/j.gene.2023.147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Nonspecific lipid transfer proteins (nsLTPs) promote the intermembrane transportation of phospholipids, fatty acids, and steroids, and play diverse roles in various biological processes. However, the potential roles of the rice nsLTPs have not been well elucidated yet. Here, the functions of OsLTPL18 were analyzed using CRISPR/Cas9 strategy and cytological analysis. The osltpl18 (osltpl18-1, osltpl18-2, and osltpl18-3) seeds were thinner, and 1000-grain weight and grain thickness of osltpl18 plants were decreased obviously, compared to the ZH11. Meanwhile, the results of germination assay and 1 % TTC staining showed that vigor of osltpl18 seeds decreased significantly. Furthermore, the results of scanning electron microscopy (SEM) revealed that the cell width of spikelet hull in osltpl18 lines was significantly reduced than that in WT, as well as cell number in grain-width direction. Finally, we found that co-expressed genes were enriched in glucan biosynthesis, protein transporter activity, serine-type endopeptidase inhibitor activity, and nutrient reservoir activity. In this study, we discussed that OsLTPL18 might have coordinating functions in regulation of grain weight and germination in rice.
Collapse
Affiliation(s)
- Yangyang Li
- School of Basic Medical Science, Nanchang University, Nanchang 330031, China
| | - Lina Guo
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Ying Cui
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jiexiu Ouyang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
7
|
Santos-Silva CAD, Ferreira-Neto JRC, Amador VC, Bezerra-Neto JP, Vilela LMB, Binneck E, Rêgo MDS, da Silva MD, Mangueira de Melo ALT, da Silva RH, Benko-Iseppon AM. From Gene to Transcript and Peptide: A Deep Overview on Non-Specific Lipid Transfer Proteins (nsLTPs). Antibiotics (Basel) 2023; 12:antibiotics12050939. [PMID: 37237842 DOI: 10.3390/antibiotics12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) stand out among plant-specific peptide superfamilies due to their multifaceted roles in plant molecular physiology and development, including their protective functions against pathogens. These antimicrobial agents have demonstrated remarkable efficacy against bacterial and fungal pathogens. The discovery of plant-originated, cysteine-rich antimicrobial peptides such as nsLTPs has paved the way for exploring the mentioned organisms as potential biofactories for synthesizing antimicrobial compounds. Recently, nsLTPs have been the focus of a plethora of research and reviews, providing a functional overview of their potential activity. The present work compiles relevant information on nsLTP omics and evolution, and it adds meta-analysis of nsLTPs, including: (1) genome-wide mining in 12 plant genomes not studied before; (2) latest common ancestor analysis (LCA) and expansion mechanisms; (3) structural proteomics, scrutinizing nsLTPs' three-dimensional structure/physicochemical characteristics in the context of nsLTP classification; and (4) broad nsLTP spatiotemporal transcriptional analysis using soybean as a study case. Combining a critical review with original results, we aim to integrate high-quality information in a single source to clarify unexplored aspects of this important gene/peptide family.
Collapse
Affiliation(s)
| | | | - Vinícius Costa Amador
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Lívia Maria Batista Vilela
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Eliseu Binneck
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina 86085-981, Brazil
| | - Mireli de Santana Rêgo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Manassés Daniel da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Rahisa Helena da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
8
|
Xue Y, Wu F, Chen R, Wang X, Tseke Inkabanga A, Huang L, Qin S, Zhang M, Chai Y. Genome-wide analysis of fatty acid desaturase genes in chia (Salvia hispanica) reveals their crucial roles in cold response and seed oil formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107737. [PMID: 37163804 DOI: 10.1016/j.plaphy.2023.107737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Chia (Salvia hispanica) is a functional food crop with high α-linolenic acid (ALA), the omega-3 essential fatty acid, but its worldwide plantation is limited by cold-intolerance and strict short-photoperiod flowering feature. Fatty acid desaturases (FADs) are responsible for seed oil accumulation, and play important roles in cold stress tolerance of plants. To date, there is no report on systemically genome-wide analysis of FAD genes in chia (ShiFADs). In this study, 31 ShiFAD genes were identified, 3 of which contained 2 alternative splicing transcripts, and they were located in 6 chromosomes of chia. Phylogenetic analysis classified the ShiFAD proteins into 7 groups, with conserved gene structure and MEME motifs within each group. Tandem and segmental duplications coursed the expansion of ShiFAD genes. Numerous cis-regulatory elements, including hormone response elements, growth and development elements, biotic/abiotic stress response elements, and transcription factor binding sites, were predicted in ShiFAD promoters. 24 miRNAs targeting ShiFAD genes were identified at whole-genome level. In total, 15 SSR loci were predicted in ShiFAD genes/promoters. RNA-seq data showed that ShiFAD genes were expressed in various organs with different levels. qRT-PCR detection revealed the inducibility of ShiSAD2 and ShiSAD7 in response to cold stress, and validated the seed-specific expression of ShiSAD11a. Yeast expression of ShiSAD11a confirmed the catalytic activity of its encoded protein, and its heterologous expression in Arabidopsis thaliana significantly increased seed oleic acid content. This work lays a foundation for molecular dissection of chia high-ALA trait and functional study of ShiFAD genes in cold tolerance.
Collapse
Affiliation(s)
- Yufei Xue
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Fangzhou Wu
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ruochen Chen
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoyang Wang
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Alain Tseke Inkabanga
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; Faculté des Sciences Agronomiques, Université Pédagogique Nationale (UPN), Kinshasa, Congo
| | - Li Huang
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shujun Qin
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Min Zhang
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yourong Chai
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Li J, Zhao JY, Shi Y, Fu HY, Huang MT, Meng JY, Gao SJ. Systematic and functional analysis of non-specific lipid transfer protein family genes in sugarcane under Xanthomonas albilineans infection and salicylic acid treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:1014266. [PMID: 36275567 PMCID: PMC9581186 DOI: 10.3389/fpls.2022.1014266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small basic proteins that play a significant regulatory role in a wide range of physiological processes. To date, no genome-wide survey and expression analysis of this gene family in sugarcane has been performed. In this study we identified the nsLTP gene family in Saccharum spontaneum and carried out expression profiling of nsLTPs in two sugarcane cultivars (Saccharum spp.) that have different resistance to leaf scald caused by Xanthomonas albilineans (Xa) infection. The effect of stress related to exogenous salicylic acid (SA) treatment was also examined. At a genome-wide level, S. spontaneum AP85-441 had 71 SsnsLTP genes including 66 alleles. Tandem (9 gene pairs) and segmental (36 gene pairs) duplication events contributed to SsnsLTP gene family expansion. Five SsnsLTP proteins were predicted to interact with five other proteins. Expression of ShnsLTPI.8/10/Gb.1 genes was significantly upregulated in LCP85-384 (resistant cultivar), but downregulated in ROC20 (susceptible cultivar), suggesting that these genes play a positive regulatory role in response of sugarcane to Xa infection. Conversely, ShnsLTPGa.4/Ge.3 appears to act as a negative regulator in response Xa infection. The majority (16/17) of tested genes were positively induced in LCP85-384 72 h after SA treatment. In both cultivars, but particularly in LCP85-384, ShnsLTPIV.3/VIII.1 genes were upregulated at all time-points, suggesting that the two genes might act as positive regulators under SA stress. Meanwhile, both cultivars showed downregulated ShnsLTPGb.1 gene expression, indicating its potential negative role in SA treatment responses. Notably, the ShnsLTPGb.1 gene had contrasting effects, with positive regulation of gene expression in response to Xa infection and negative regulation induced by SA stress. Together, our results provide valuable information for elucidating the function of ShnsLTP family members under two stressors and identified novel gene sources for development of sugarcane that are tolerant of environmental stimuli.
Collapse
|