1
|
Chekmaryova I, Kalinin D, Kostin A, Buchwalow I, Tiemann M, Elieh-Ali-Komi D, Atiakshin D. Ultrastructural features of tumor-associated mast cells in parasympathetic paragangliomas (chemodectomas) of the neck. Microsc Res Tech 2024; 87:1373-1383. [PMID: 38380731 DOI: 10.1002/jemt.24523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
The mechanisms of the pathogenesis of neck paraganglioma (PGL) and the possible role of mast cells (MCs) in its development and metastasis are still poorly understood. We analyzed MCs' morphologic characterization, activation, and the properties of their cytoplasmic/released granules in PGLs, using light and transmission electron microscopy. Paragangliomas showed a large tumor-associated MC population both in the connective tissue layers of the tumor and between the tumor cells. Notably, MCs were presented by a high expression of specific proteases, size variation, polymorphism, and variable ultrastructural phenotype of granules. A massive number of granules were released surrounding the degranulated MCs while the integrity of MC membrane was maintained. Granules were electron-dense with or without a membrane, ranging from 0.2 to 0.8 μm in diameter. MC plasmalemma was not found at the site of MC-collagen fibrils contact, whereas the secretome and fibrils were directly contacted. We observed direct and mediator-based interactions between MCs and paraganglioma cells. The latter preserved their membrane integrity when MC granules were not in proximity. The effects of the MC secretome on the paraganglioma microenvironment demonstrated its pathogenetic role in tumor progression and allow its application to new diagnostic criteria and the development of protocols for personalized therapy. RESEARCH HIGHLIGHTS: Ultrastructural analysis reveals novel regulatory effects of mast cells via diverse secretory pathways on the pathogenesis of parasympathetic paraganglioma, including fibrous extracellular matrix remodeling and mediator-based interactions between MCs and cells of the tumor microenvironment.
Collapse
Affiliation(s)
- Irina Chekmaryova
- Federal State Budgetary Institution "National Medical Research Center of Surgery named after A. Vishnevsky", Ministry of Health of the Russian Federation, Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
| | - Dmitry Kalinin
- Federal State Budgetary Institution "National Medical Research Center of Surgery named after A. Vishnevsky", Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
- Institute for Hematopathology, Hamburg, Germany
| | | | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Voronezh, Russia
| |
Collapse
|
2
|
Atiakshin D, Kulchenko N, Kostin A, Ignatyuk M, Protasov A, Klabukov I, Baranovskii D, Faniev M, Korovyakova E, Chekmareva I, Buchwalow I, Tiemann M. Cyto- and Histopographic Assessment of CPA3-Positive Testicular Mast Cells in Obstructive and Non-Obstructive Azoospermia. Cells 2024; 13:833. [PMID: 38786055 PMCID: PMC11120214 DOI: 10.3390/cells13100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Infertility is an important personal and society disease, of which the male factor represents half of all causes. One of the aspects less studied in male infertility is the immunological testicular microenvironment. Mast cells (MCs), having high potential for regulating spermatogenesis due to fine-tuning the state of the integrative buffer metabolic environment, are one of the most crucial cellular subpopulations of the testicular interstitium. One important component of the MC secretome is proteases that can act as proinflammatory agents and in extracellular matrix (ECM) remodeling. In the testis, MCs are an important cell component of the testicular interstitial tissue (TIT). However, there are still no studies addressing the analysis of a specific MC protease-carboxypeptidase A3 (CPA3)-in cases with altered spermatogenesis. The cytological and histotopographic features of testicular CPA3+ MCs were examined in a study involving 34 men with azoospermia. As revealed, in cases with non-obstructive azoospermia, a higher content of CPA3+ MCs in the TIT and migration to the microvasculature and peritubular tissue of seminiferous tubules were observed when compared with cases with obstructive azoospermia. Additionally, a high frequency of CPA3+ MCs colocalization with fibroblasts, Leydig cells, and elastic fibers was detected in cases with NOA. Thus, CPA3 seems to be of crucial pathogenetic significance in the formation of a profibrogenic background of the tissue microenvironment, which may have direct and indirect effects on spermatogenesis.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Nina Kulchenko
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Andrey Kostin
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Michael Ignatyuk
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Andrey Protasov
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia (D.B.)
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia (D.B.)
| | - Mikhail Faniev
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Elina Korovyakova
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Irina Chekmareva
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Igor Buchwalow
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
- Institute for Hematopathology, Fangdieckstr, 75a, 22547 Hamburg, Germany;
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr, 75a, 22547 Hamburg, Germany;
| |
Collapse
|
3
|
Kohl LM, Sumpter TL. Melanomas and mast cells: an ambiguous relationship. Melanoma Res 2024; 34:1-8. [PMID: 37924526 DOI: 10.1097/cmr.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Mast cells (MCs) accumulate in a broad range of tumors, including melanomas. While MCs are potent initiators of immunity in infection, and in allergic inflammation, the function of MCs in anti-melanoma immunity is unclear. MCs have the potential to release tumoricidal cytokines and proteases, to activate antigen-presenting cells and to promote anti-tumor adaptive immunity. However, within the immunosuppressive tumor microenvironment (TME), MC activation may promote angiogenesis and contribute to tumor growth. In this review, the relationship between MCs and melanomas is discussed with a focus on the impact of the TME on MC activation.
Collapse
Affiliation(s)
- Lisa M Kohl
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
- Departments of Dermatology
| | - Tina L Sumpter
- Departments of Dermatology
- Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Rahimi A, Malakoutikhah Z, Rahimmanesh I, Ferns GA, Nedaeinia R, Ishaghi SMM, Dana N, Haghjooy Javanmard S. The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies. Cancer Cell Int 2023; 23:312. [PMID: 38057843 DOI: 10.1186/s12935-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Wang F, Cheng F, Zheng F. Bioinformatic-based genetic characterizations of neural regulation in skin cutaneous melanoma. Front Oncol 2023; 13:1166373. [PMID: 37404751 PMCID: PMC10315675 DOI: 10.3389/fonc.2023.1166373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Background Recent discoveries uncovered the complex cancer-nerve interactions in several cancer types including skin cutaneous melanoma (SKCM). However, the genetic characterization of neural regulation in SKCM is unclear. Methods Transcriptomic expression data were collected from the TCGA and GTEx portal, and the differences in cancer-nerve crosstalk-associated gene expressions between normal skin and SKCM tissues were analyzed. The cBioPortal dataset was utilized to implement the gene mutation analysis. PPI analysis was performed using the STRING database. Functional enrichment analysis was analyzed by the R package clusterProfiler. K-M plotter, univariate, multivariate, and LASSO regression were used for prognostic analysis and verification. The GEPIA dataset was performed to analyze the association of gene expression with SKCM clinical stage. ssGSEA and GSCA datasets were used for immune cell infiltration analysis. GSEA was used to elucidate the significant function and pathway differences. Results A total of 66 cancer-nerve crosstalk-associated genes were identified, 60 of which were up- or downregulated in SKCM and KEGG analysis suggested that they are mainly enriched in the calcium signaling pathway, Ras signaling pathway, PI3K-Akt signaling pathway, and so on. A gene prognostic model including eight genes (GRIN3A, CCR2, CHRNA4, CSF1, NTN1, ADRB1, CHRNB4, and CHRNG) was built and verified by independent cohorts GSE59455 and GSE19234. A nomogram was constructed containing clinical characteristics and the above eight genes, and the AUCs of the 1-, 3-, and 5-year ROC were 0.850, 0.811, and 0.792, respectively. Expression of CCR2, GRIN3A, and CSF1 was associated with SKCM clinical stages. There existed broad and strong correlations of the prognostic gene set with immune infiltration and immune checkpoint genes. CHRNA4 and CHRNG were independent poor prognostic genes, and multiple metabolic pathways were enriched in high CHRNA4 expression cells. Conclusion Comprehensive bioinformatics analysis of cancer-nerve crosstalk-associated genes in SKCM was performed, and an effective prognostic model was constructed based on clinical characteristics and eight genes (GRIN3A, CCR2, CHRNA4, CSF1, NTN1, ADRB1, CHRNB4, and CHRNG), which were widely related to clinical stages and immunological features. Our work may be helpful for further investigation in the molecular mechanisms correlated with neural regulation in SKCM, and in searching new therapeutic targets.
Collapse
Affiliation(s)
- Fengdi Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Kaszuba A, Sławińska M, Żółkiewicz J, Sobjanek M, Nowicki RJ, Lange M. Mastocytosis and Skin Cancer: The Current State of Knowledge. Int J Mol Sci 2023; 24:9840. [PMID: 37372988 DOI: 10.3390/ijms24129840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Mastocytosis is a heterogeneous group of diseases associated with excessive proliferation and accumulation of mast cells in different organs. Recent studies have demonstrated that patients suffering from mastocytosis face an increased risk of melanoma and non-melanoma skin cancer. The cause of this has not yet been clearly identified. In the literature, the potential influence of several factors has been suggested, including genetic background, the role of cytokines produced by mast cells, iatrogenic and hormonal factors. The article summarizes the current state of knowledge regarding the epidemiology, pathogenesis, diagnosis, and management of skin neoplasia in mastocytosis patients.
Collapse
Affiliation(s)
- Agnieszka Kaszuba
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Martyna Sławińska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Jakub Żółkiewicz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Michał Sobjanek
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Roman J Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| |
Collapse
|
7
|
Mast Cells and Interleukins. Int J Mol Sci 2022; 23:ijms232214004. [PMID: 36430483 PMCID: PMC9697830 DOI: 10.3390/ijms232214004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Mast cells play a critical role in inflammatory diseases and tumor growth. The versatility of mast cells is reflected in their ability to secrete a wide range of biologically active cytokines, including interleukins, chemokines, lipid mediators, proteases, and biogenic amines. The aim of this review article is to analyze the complex involvement of mast cells in the secretion of interleukins and the role of interleukins in the regulation of biological activities of mast cells.
Collapse
|
8
|
Inhibition of Complex I of the Respiratory Chain, but Not Complex III, Attenuates Degranulation and Cytokine Secretion in Human Skin Mast Cells. Int J Mol Sci 2022; 23:ijms231911591. [PMID: 36232895 PMCID: PMC9570238 DOI: 10.3390/ijms231911591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
The mechanisms of mast cell (MC) degranulation and MC-driven skin symptoms are well-described. In contrast, data about the role of mitochondrial respiration for immune functions of human skin MCs are lacking. Oxygen consumption rate (OCR) in primary human skin MCs during IgE-mediated activation in the absence of glucose was examined using a metabolic flux analyzer. Effects of the inhibition of mitochondrial complex I (by rotenone A) and III (by myxothiazol) on degranulation and cytokine secretion (IL-4, IL-5, IL-6, IL-13, TNF-α, and GM-CSF) were explored by the β-hexosaminidase release assay and multiplex ELISA. IgE-mediated activation rapidly increased the mitochondrial OCR and extracellular acidification; the contribution of non-mitochondrial oxygen consumption remained unchanged at lower levels. Both myxothiazol and rotenone A reduced OCR, the mitochondrial parameters, and extracellular acidification; however, myxothiazol did not affect degranulation and cytokine secretion. In contrast, degranulation and the secretion of IL-6, IL-13, TNF-α, and GM-CSF were reduced by rotenone A, whereas the secretion of IL-4 and IL-5 was not significantly affected. The inhibitors did not affect cell viability. Our results highlight the important role played by mitochondrial respiration in primary human skin MCs and allow for a conclusion on a hierarchy of their effector functions. Drugs targeting specific pathways in mitochondria may provide future options to control MC-driven skin symptoms.
Collapse
|