1
|
Lechner J, von Baehr V, Notter F, Schick F. Osseointegration and osteoimmunology in implantology: assessment of the immune sustainability of dental implants using advanced sonographic diagnostics: research and case reports. J Int Med Res 2024; 52:3000605231224161. [PMID: 38259068 PMCID: PMC10807457 DOI: 10.1177/03000605231224161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE Bone marrow defects of the jaw (BMDJ) surrounding dental implants, in combination with impaired bone-to-implant contact (BIC), are difficult to detect in X-rays. This study evaluated BMDJ surrounding titanium (Ti-Impl) and ceramic (Cer-Impl) dental implants and incomplete BIC using a new trans-alveolar ultrasonography device (TAU) with numerical scaling for BIC. METHODS The titanium stimulation test (Ti-Stim) was used to detect immune overactivation in response to titanium. Bone density surrounding implants was measured using TAU. We also validated osteoimmune dysregulation. RESULTS TAU values showed reduced BIC and decreased osseointegration for Ti-Impl. Moreover, TAU values in the Cer-Impl group were more than twice those in the Ti-Impl cohort. The multiplex analysis of C-C motif chemokine 5 (CCL5, also known as RANTES) expression revealed a 20-fold increase in BMDJ surrounding Ti-Impl. Higher levels of CCL5 inflammation were present in the positive Ti-Stim group. CONCLUSIONS Our data indicate that Cer-Impl have an osteoimmune advantage over Ti-Impl. The key determinant for osteoimmune sustainability appears to be the absence of inflammation at the implant site. We therefore recommend the use of TAU to assess the implant site prior to implantation.
Collapse
Affiliation(s)
| | - Volker von Baehr
- Department of Immunology and Allergology, Institute for Medical Diagnostics, Berlin, Germany
| | | | | |
Collapse
|
2
|
Capuano N, Amato A, Dell’Annunziata F, Giordano F, Folliero V, Di Spirito F, More PR, De Filippis A, Martina S, Amato M, Galdiero M, Iandolo A, Franci G. Nanoparticles and Their Antibacterial Application in Endodontics. Antibiotics (Basel) 2023; 12:1690. [PMID: 38136724 PMCID: PMC10740835 DOI: 10.3390/antibiotics12121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Root canal treatment represents a significant challenge as current cleaning and disinfection methodologies fail to remove persistent bacterial biofilms within the intricate anatomical structures. Recently, the field of nanotechnology has emerged as a promising frontier with numerous biomedical applications. Among the most notable contributions of nanotechnology are nanoparticles, which possess antimicrobial, antifungal, and antiviral properties. Nanoparticles cause the destructuring of bacterial walls, increasing the permeability of the cell membrane, stimulating the generation of reactive oxygen species, and interrupting the replication of deoxyribonucleic acid through the controlled release of ions. Thus, they could revolutionize endodontics, obtaining superior results and guaranteeing a promising short- and long-term prognosis. Therefore, chitosan, silver, graphene, poly(lactic) co-glycolic acid, bioactive glass, mesoporous calcium silicate, hydroxyapatite, zirconia, glucose oxidase magnetic, copper, and zinc oxide nanoparticles in endodontic therapy have been investigated in the present review. The diversified antimicrobial mechanisms of action, the numerous applications, and the high degree of clinical safety could encourage the scientific community to adopt nanoparticles as potential drugs for the treatment of endodontic diseases, overcoming the limitations related to antibiotic resistance and eradication of the biofilm.
Collapse
Affiliation(s)
- Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Alessandra Amato
- Department of Neuroscience, Reproductive Science and Dentistry, University of Naples Federico II, 80138 Naples, Italy;
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Federica Di Spirito
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Pragati Rajendra More
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
| | - Stefano Martina
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Massimo Amato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alfredo Iandolo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| |
Collapse
|
3
|
Nasarudin NA, Razali M, Goh V, Chai WL, Muchtar A. Expression of Interleukin-1β and Histological Changes of the Three-Dimensional Oral Mucosal Model in Response to Yttria-Stabilized Nanozirconia. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2027. [PMID: 36903142 PMCID: PMC10003861 DOI: 10.3390/ma16052027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Over the years, advancement in ceramic-based dental restorative materials has led to the development of monolithic zirconia with increased translucency. The monolithic zirconia fabricated from nano-sized zirconia powders is shown to be superior in physical properties and more translucent for anterior dental restorations. Most in vitro studies on monolithic zirconia have focused mainly on the effect of surface treatment or the wear of the material, while the nanotoxicity of this material is yet to be explored. Hence, this research aimed to assess the biocompatibility of yttria-stabilized nanozirconia (3-YZP) on the three-dimensional oral mucosal models (3D-OMM). The 3D-OMMs were constructed using human gingival fibroblast (HGF) and immortalized human oral keratinocyte cell line (OKF6/TERT-2), co-cultured on an acellular dermal matrix. On day 12, the tissue models were exposed to 3-YZP (test) and inCoris TZI (IC) (reference material). The growth media were collected at 24 and 48 h of exposure to materials and assessed for IL-1β released. The 3D-OMMs were fixed with 10% formalin for the histopathological assessments. The concentration of the IL-1β was not statistically different between the two materials for 24 and 48 h of exposure (p = 0.892). Histologically, stratification of epithelial cells was formed without evidence of cytotoxic damage and the epithelial thickness measured was the same for all model tissues. The excellent biocompatibility of nanozirconia, as evidenced by the multiple endpoint analyses of the 3D-OMM, may indicate the potential of its clinical application as a restorative material.
Collapse
Affiliation(s)
- Naziratul Adirah Nasarudin
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Masfueh Razali
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Victor Goh
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Andanastuti Muchtar
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|