1
|
Niu X, Zhang Y, Wang Y. Co-culture models for investigating cellular crosstalk in the glioma microenvironment. CANCER PATHOGENESIS AND THERAPY 2024; 2:219-230. [PMID: 39371093 PMCID: PMC11447344 DOI: 10.1016/j.cpt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 10/08/2024]
Abstract
Glioma is the most prevalent primary malignant tumor in the central nervous system (CNS). It represents a diverse group of brain malignancies characterized by the presence of various cancer cell types as well as an array of noncancerous cells, which together form the intricate glioma tumor microenvironment (TME). Understanding the interactions between glioma cells/glioma stem cells (GSCs) and these noncancerous cells is crucial for exploring the pathogenesis and development of glioma. To invesigate these interactions requires in vitro co-culture models that closely mirror the actual TME in vivo. In this review, we summarize the two- and three-dimensional in vitro co-culture model systems for glioma-TME interactions currently available. Furthermore, we explore common glioma-TME cell interactions based on these models, including interactions of glioma cells/GSCs with endothelial cells/pericytes, microglia/macrophages, T cells, astrocytes, neurons, or other multi-cellular interactions. Together, this review provides an update on the glioma-TME interactions, offering insights into glioma pathogenesis.
Collapse
Affiliation(s)
- Xiaodong Niu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Bravo M, Fortuni B, Mulvaney P, Hofkens J, Uji-I H, Rocha S, Hutchison JA. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release 2024; 372:751-777. [PMID: 38909701 DOI: 10.1016/j.jconrel.2024.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.
Collapse
Affiliation(s)
- M Bravo
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - B Fortuni
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - P Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - J Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Max Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - H Uji-I
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Sapporo 001-0020, Hokkaido, Japan
| | - S Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - J A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
3
|
Qureshi S, Anjum S, Hussain M, Sheikh A, Gupta G, Almoyad MAA, Wahab S, Kesharwani P. A recent insight of applications of gold nanoparticles in glioblastoma multiforme therapy. Int J Pharm 2024; 660:124301. [PMID: 38851411 DOI: 10.1016/j.ijpharm.2024.124301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The application of gold nanoparticles (AuNPs) in cancer therapy, particularly targeted therapy of glioblastoma multiforme (GBM), is an up-and-coming field of research that has gained much interest in recent years. GBM is a life-threatening malignant tumour of the brain that currently has a 95 % death rate with an average of 15 months of survival. AuNPs have proven to have wide clinical implications and compelling therapeutic potential in many researches, specifically in GBM treatment. It was found that the reason why AuNPs were highly desired for GBM treatment was due to their unique properties that diversified the applications of AuNPs further to include imaging, diagnosis, and photothermal therapy. These properties include easy synthesis, biocompatibility, and surface functionalization. Various studies also underscored the ability of AuNPs to cross the blood-brain-barrier and selectively target tumour cells while displaying no major safety concerns which resulted in better therapy results. We attempt to bring together some of these studies in this review and provide a comprehensive overview of safety evaluations and current and potential applications of AuNPs in GBM therapy that may result in AuNP-mediated therapy to be the new gold standard for GBM treatment.
Collapse
Affiliation(s)
- Saima Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Samiah Anjum
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Muzammil Hussain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India. https://scholar.google.com/citations?user=DJkvOAQAAAAJ&hl=en
| |
Collapse
|
4
|
Ballard A, Patush R, Perez J, Juarez C, Kirillova A. Bioprinting: Mechanical Stabilization and Reinforcement Strategies in Regenerative Medicine. Tissue Eng Part A 2024; 30:387-408. [PMID: 38205634 DOI: 10.1089/ten.tea.2023.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Bioprinting describes the printing of biomaterials and cell-laden or cell-free hydrogels with various combinations of embedded bioactive molecules. It encompasses the precise patterning of biomaterials and cells to create scaffolds for different biomedical needs. There are many requirements that bioprinting scaffolds face, and it is ultimately the interplay between the scaffold's structure, properties, processing, and performance that will lead to its successful translation. Among the essential properties that the scaffolds must possess-adequate and appropriate application-specific chemical, mechanical, and biological performance-the mechanical behavior of hydrogel-based bioprinted scaffolds is the key to their stable performance in vivo at the site of implantation. Hydrogels that typically constitute the main scaffold material and the medium for the cells and biomolecules are very soft, and often lack sufficient mechanical stability, which reduces their printability and, therefore, the bioprinting potential. The aim of this review article is to highlight the reinforcement strategies that are used in different bioprinting approaches to achieve enhanced mechanical stability of the bioinks and the printed scaffolds. Enabling stable and robust materials for the bioprinting processes will lead to the creation of truly complex and remarkable printed structures that could accelerate the application of smart, functional scaffolds in biomedical settings. Impact statement Bioprinting is a powerful tool for the fabrication of 3D structures and scaffolds for biomedical applications. It has gained tremendous attention in recent years, and the bioink library is expanding to include more and more material combinations. From the practical application perspective, different properties need to be considered, such as the printed structure's chemical, mechanical, and biological performances. Among these, the mechanical behavior of the printed constructs is critical for their successful translation into the clinic. The aim of this review article is to explore the different reinforcement strategies used for the mechanical stabilization of bioinks and bioprinted structures.
Collapse
Affiliation(s)
- Ashleigh Ballard
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Rebecca Patush
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Jenesis Perez
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Carmen Juarez
- Des Moines Area Community College, Ankeny, Iowa, USA
| | - Alina Kirillova
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
5
|
Li H, Zhu Y, Wang X, Feng Y, Qian Y, Ma Q, Li X, Chen Y, Chen K. Joining Forces: The Combined Application of Therapeutic Viruses and Nanomaterials in Cancer Therapy. Molecules 2023; 28:7679. [PMID: 38005401 PMCID: PMC10674375 DOI: 10.3390/molecules28227679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer, on a global scale, presents a monumental challenge to our healthcare systems, posing a significant threat to human health. Despite the considerable progress we have made in the diagnosis and treatment of cancer, realizing precision cancer therapy, reducing side effects, and enhancing efficacy remain daunting tasks. Fortunately, the emergence of therapeutic viruses and nanomaterials provides new possibilities for tackling these issues. Therapeutic viruses possess the ability to accurately locate and attack tumor cells, while nanomaterials serve as efficient drug carriers, delivering medication precisely to tumor tissues. The synergy of these two elements has led to a novel approach to cancer treatment-the combination of therapeutic viruses and nanomaterials. This advantageous combination has overcome the limitations associated with the side effects of oncolytic viruses and the insufficient tumoricidal capacity of nanomedicines, enabling the oncolytic viruses to more effectively breach the tumor's immune barrier. It focuses on the lesion site and even allows for real-time monitoring of the distribution of therapeutic viruses and drug release, achieving a synergistic effect. This article comprehensively explores the application of therapeutic viruses and nanomaterials in tumor treatment, dissecting their working mechanisms, and integrating the latest scientific advancements to predict future development trends. This approach, which combines viral therapy with the application of nanomaterials, represents an innovative and more effective treatment strategy, offering new perspectives in the field of tumor therapy.
Collapse
Affiliation(s)
- Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
- Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xin Wang
- Center of Infectious Disease Research, School of Life Science, Westlake University, Hangzhou 310024, China;
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Qiman Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xinyuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yihan Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| |
Collapse
|
6
|
Wu BX, Wu Z, Hou YY, Fang ZX, Deng Y, Wu HT, Liu J. Application of three-dimensional (3D) bioprinting in anti-cancer therapy. Heliyon 2023; 9:e20475. [PMID: 37800075 PMCID: PMC10550518 DOI: 10.1016/j.heliyon.2023.e20475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a novel technology that enables the creation of 3D structures with bioinks, the biomaterials containing living cells. 3D bioprinted structures can mimic human tissue at different levels of complexity from cells to organs. Currently, 3D bioprinting is a promising method in regenerative medicine and tissue engineering applications, as well as in anti-cancer therapy research. Cancer, a type of complex and multifaceted disease, presents significant challenges regarding diagnosis, treatment, and drug development. 3D bioprinted models of cancer have been used to investigate the molecular mechanisms of oncogenesis, the development of cancers, and the responses to treatment. Conventional 2D cancer models have limitations in predicting human clinical outcomes and drug responses, while 3D bioprinting offers an innovative technique for creating 3D tissue structures that closely mimic the natural characteristics of cancers in terms of morphology, composition, structure, and function. By precise manipulation of the spatial arrangement of different cell types, extracellular matrix components, and vascular networks, 3D bioprinting facilitates the development of cancer models that are more accurate and representative, emulating intricate interactions between cancer cells and their surrounding microenvironment. Moreover, the technology of 3D bioprinting enables the creation of personalized cancer models using patient-derived cells and biomarkers, thereby advancing the fields of precision medicine and immunotherapy. The integration of 3D cell models with 3D bioprinting technology holds the potential to revolutionize cancer research, offering extensive flexibility, precision, and adaptability in crafting customized 3D structures with desired attributes and functionalities. In conclusion, 3D bioprinting exhibits significant potential in cancer research, providing opportunities for identifying therapeutic targets, reducing reliance on animal experiments, and potentially lowering the overall cost of cancer treatment. Further investigation and development are necessary to address challenges such as cell viability, printing resolution, material characteristics, and cost-effectiveness. With ongoing progress, 3D bioprinting can significantly impact the field of cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
7
|
Pontico M, Conte M, Petronella F, Frantellizzi V, De Feo MS, Di Luzio D, Pani R, De Vincentis G, De Sio L. 18F-fluorodeoxyglucose ( 18F-FDG) Functionalized Gold Nanoparticles (GNPs) for Plasmonic Photothermal Ablation of Cancer: A Review. Pharmaceutics 2023; 15:319. [PMID: 36839641 PMCID: PMC9967497 DOI: 10.3390/pharmaceutics15020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The meeting and merging between innovative nanotechnological systems, such as nanoparticles, and the persistent need to outperform diagnostic-therapeutic approaches to fighting cancer are revolutionizing the medical research scenario, leading us into the world of nanomedicine. Photothermal therapy (PTT) is a non-invasive thermo-ablative treatment in which cellular hyperthermia is generated through the interaction of near-infrared light with light-to-heat converter entities, such as gold nanoparticles (GNPs). GNPs have great potential to improve recovery time, cure complexity, and time spent on the treatment of specific types of cancer. The development of gold nanostructures for photothermal efficacy and target selectivity ensures effective and deep tissue-penetrating PTT with fewer worries about adverse effects from nonspecific distributions. Regardless of the thriving research recorded in the last decade regarding the multiple biomedical applications of nanoparticles and, in particular, their conjugation with drugs, few works have been completed regarding the possibility of combining GNPs with the cancer-targeted pharmaceutical fluorodeoxyglucose (FDG). This review aims to provide an actual scenario on the application of functionalized GNP-mediated PTT for cancer ablation purposes, regarding the opportunity given by the 18F-fluorodeoxyglucose (18F-FDG) functionalization.
Collapse
Affiliation(s)
- Mariano Pontico
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Francesca Petronella
- Institute of Crystallography CNR-IC, National Research Council of Italy, Monterotondo, 00015 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Dario Di Luzio
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Roberto Pani
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
8
|
Zhuang X, Deng G, Wu X, Xie J, Li D, Peng S, Tang D, Zhou G. Recent advances of three-dimensional bioprinting technology in hepato-pancreato-biliary cancer models. Front Oncol 2023; 13:1143600. [PMID: 37188191 PMCID: PMC10175665 DOI: 10.3389/fonc.2023.1143600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Hepato-pancreato-biliary (HPB) cancer is a serious category of cancer including tumors originating in the liver, pancreas, gallbladder and biliary ducts. It is limited by two-dimensional (2D) cell culture models for studying its complicated tumor microenvironment including diverse contents and dynamic nature. Recently developed three-dimensional (3D) bioprinting is a state-of-the-art technology for fabrication of biological constructs through layer-by-layer deposition of bioinks in a spatially defined manner, which is computer-aided and designed to generate viable 3D constructs. 3D bioprinting has the potential to more closely recapitulate the tumor microenvironment, dynamic and complex cell-cell and cell-matrix interactions compared to the current methods, which benefits from its precise definition of positioning of various cell types and perfusing network in a high-throughput manner. In this review, we introduce and compare multiple types of 3D bioprinting methodologies for HPB cancer and other digestive tumors. We discuss the progress and application of 3D bioprinting in HPB and gastrointestinal cancers, focusing on tumor model manufacturing. We also highlight the current challenges regarding clinical translation of 3D bioprinting and bioinks in the field of digestive tumor research. Finally, we suggest valuable perspectives for this advanced technology, including combination of 3D bioprinting with microfluidics and application of 3D bioprinting in the field of tumor immunology.
Collapse
Affiliation(s)
- Xiaomei Zhuang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Gang Deng
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoying Wu
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Juping Xie
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dong Li
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Songlin Peng
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Guoying Zhou, ;
| |
Collapse
|