1
|
Yang B, Wan Y, Wang J, Liu Y, Wang S. Construction and validation of a prognostic model based on immune-metabolic-related genes in oral squamous cell carcinoma. Comput Biol Chem 2024; 113:108258. [PMID: 39447406 DOI: 10.1016/j.compbiolchem.2024.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Oral squamous cell carcinoma (OSCC), a significant type of head and neck cancer, has witnessed increasing incidence and mortality rates. Immune-related genes (IRGs) and metabolic-related genes (MRGs) play essential roles in the pathogenesis, metastasis, and progression of OSCC. This study exploited data from The Cancer Genome Atlas (TCGA) to identify IRGs and MRGs related to OSCC through differential analysis. Univariate Cox analysis was utilized to determine immune-metabolic-related genes (IMRGs) associated with patient prognosis. A prognostic model for OSCC was constructed using Lasso-Cox regression and subsequently validated with datasets from the Gene Expression Omnibus (GEO). Non-Negative Matrix Factorization (NMF) clustering identified three molecular subtypes of OSCC, among which the C2 subtype showed better overall survival (OS) and progression-free survival (PFS). A prognostic model based on nine IMRGs was developed to categorize OSCC patients into high- and low-risk groups, with the low-risk group demonstrating significantly longer OS in both training and testing cohorts. The model showed strong predictive capabilities, and the risk score served as an independent prognostic factor. Additionally, expression levels of programmed death 1 (PD1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) differed between the risk groups. Gene Set Enrichment Analysis (GSEA) indicated distinct enriched pathways between high-risk and low-risk groups, highlighting the crucial roles of immune and metabolic processes in OSCC. The nine IMRGs prognostic model presented excellent predictive performance and has potential for clinical application.
Collapse
Affiliation(s)
- Bo Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Yu Wan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Jieqiong Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Yun Liu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Shaohua Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
2
|
Wang L, He Y, Bai Y, Zhang S, Pang B, Chen A, Wu X. Construction and validation of a folate metabolism-related gene signature for predicting prognosis in HNSCC. J Cancer Res Clin Oncol 2024; 150:198. [PMID: 38625586 PMCID: PMC11021263 DOI: 10.1007/s00432-024-05731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Metabolic reprogramming is currently considered a hallmark of tumor and immune development. It is obviously of interest to identify metabolic enzymes that are associated with clinical prognosis in head and neck squamous cell carcinomas (HNSCC). METHODS Candidate genes were screened to construct folate metabolism scores by Cox regression analysis. Functional enrichment between high- and low-folate metabolism groups was explored by GO, KEGG, GSVA, and ssGSEA. EPIC, MCPcounter, and xCell were utilized to explore immune cell infiltration between high- and low-folate metabolism groups. Relevant metabolic scores were calculated and visually analyzed by the "IOBR" software package. RESULTS To investigate the mechanism behind metabolic reprogramming of HNSCC, 2886 human genes associated with 86 metabolic pathways were selected. Folate metabolism is significantly enriched in HNSCC, and that the six-gene (MTHFD1L, MTHFD2, SHMT2, ATIC, MTFMT, and MTHFS) folate score accurately predicts and differentiates folate metabolism levels. Reprogramming of folate metabolism affects CD8T cell infiltration and induces immune escape through the MIF signaling pathway. Further research found that SHMT2, an enzyme involved in folate metabolism, inhibits CD8T cell infiltration and induces immune escape by regulating the MIF/CD44 signaling axis, which in turn promotes HNSCC progression. CONCLUSIONS Our study identified a novel and robust folate metabolic signature. A folate metabolic signature comprising six genes was effective in assessing the prognosis and reflecting the immune status of HNSCC patients. The target molecule of folate metabolic reprogramming, SHMT2, probably plays a very important role in HNSCC development and immune escape.
Collapse
Affiliation(s)
- Lu Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Ye He
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yijiang Bai
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shuai Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Bo Pang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Anhai Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Xuewen Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Su SW, Chen X, Wang G, Li P, Yang TX, Fang KW, Wu J, Li JM. A study on the significance of serine hydroxymethyl transferase expression and its role in bladder cancer. Sci Rep 2024; 14:8324. [PMID: 38594513 PMCID: PMC11003972 DOI: 10.1038/s41598-024-58618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Bladder cancer (BLCA) is a common malignant tumor in urinary system all over the world. However, due to its high recurrence rate and complex causes, clinicians often have limited options for surgical and drug treatments. Recent researchs on the molecular mechanism of BLCA have reveals its biological progress and potential for early diagnosis. Serine hydroxymethyltransferase 1/2 (SHMT1/2) is a crucial enzyme in the one-carbon metabolism of tumor cells, and the expression levels of these isozymes have been found to be associated with the biological progression of various malignant tumors. However, the impact of SHMT1/2 on the biological progression of bladder cancer and its molecular regulation mechanism remain unclear. In this research utilizes BLCA clinical sample data, the TCGA database, and in vitro cell experiments to predict the expression levels of SHMT1/2 in BLCA. The findings indicate that SHMT1 remained unchanged, while SHMT2 expression is increased in BLCA, which was related to poor prognosis. Additionally, SHMT2 affects the growth, migration, and apoptosis of bladder cancer cells in vitro. It also influences the expression levels of E-cadherin and N-cadherin, ultimately impacting the malignant biological progression of bladder tumors. These results establish a correlation between SHMT2 and the malignant biological progression of BLCA, providing a theoretical basis for the early diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Si-Wei Su
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian Mian Avenue, Kunming, 650101, Yunnan, People's Republic of China
| | - Xian Chen
- The Department of Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guang Wang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian Mian Avenue, Kunming, 650101, Yunnan, People's Republic of China
| | - Pei Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian Mian Avenue, Kunming, 650101, Yunnan, People's Republic of China.
| | - Tong-Xin Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian Mian Avenue, Kunming, 650101, Yunnan, People's Republic of China.
| | - Ke-Wei Fang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian Mian Avenue, Kunming, 650101, Yunnan, People's Republic of China
| | - Jing Wu
- The Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Jiong-Ming Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian Mian Avenue, Kunming, 650101, Yunnan, People's Republic of China
| |
Collapse
|
4
|
Zhou S, Huang H, Zheng Z, Zheng K, Xie L. MOGS promotes stemness acquisition and invasion via enhancing NOTCH1-glycosylation dependent NOTCH pathway in colorectal cancer. Am J Cancer Res 2023; 13:5996-6010. [PMID: 38187061 PMCID: PMC10767340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, and about half of CRC patients eventually succumb to tumor metastasis. Despite this, treatment options for metastatic colon cancer remain severely limited, reflected by a 12% 5-year overall survival rate. Increasing evidence suggests that cancer stem cells (CSCs) are pivotal in driving CRC metastasis. Our study found a significant upregulation of MOGS in metastatic colorectal cancer, with high MOGS expression inversely correlating with patient prognosis. Additionally, MOGS enhances the NOTCH pathway, thus promoting stemness in CRC cells, both in vitro and in vivo. Mechanistically, MOGS may facilitate the maturation of NOTCH1 protein by promoting NOTCH1 glycosylation. Correspondingly, silencing MOGS markedly reduced invasion and stemness of CRC cells in vivo. In summary, our findings highlight the critical role of MOGS in fostering stemness and activating the NOTCH pathway in colorectal cancer cells. Disrupting the function of the MOGS/NOTCH could represent a feasible therapeutic strategy for CRC management.
Collapse
Affiliation(s)
- Shihai Zhou
- Department of Tumor Surgery, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Hongyun Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730, China
| | - Zheng Zheng
- Department of Tumor Surgery, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, China
| | - Lang Xie
- Department of General Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, China
| |
Collapse
|
5
|
Qiao Z, Li Y, Cheng Y, Li S, Liu S. SHMT2 regulates esophageal cancer cell progression and immune Escape by mediating m6A modification of c-myc. Cell Biosci 2023; 13:203. [PMID: 37932821 PMCID: PMC10629073 DOI: 10.1186/s13578-023-01148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND In recent years, the role of altered cellular metabolism in tumor progression has attracted widespread attention. Related metabolic enzymes have also been considered as potential cancer therapeutic targets. Serine hydroxymethyltransferase 2 (SHMT2) has been reported to be upregulated in several cancers and associated with poor prognosis. However, there are few studies of SHMT2 in esophageal cancer (EC), and the related functions and mechanisms also need to be further explored. METHODS In this study, we first analyzed SHMT2 expression in EC by online database and clinical samples. Then, the biological functions of SHMT2 in EC were investigated by cell and animal experiments. The intracellular m6A methylation modification levels were also evaluated by MeRIP. Linked genes and mechanisms of SHMT2 were analyzed by bioinformatics and rescue experiments. RESULTS We found that SHMT2 expression was abnormally upregulated in EC and associated with poor prognosis. Functionally, SHMT2 silencing suppressed c-myc expression in an m6A-dependent manner, thereby blocking the proliferation, migration, invasion and immune escape abilities of EC cells. Mechanistically, SHMT2 encouraged the accumulation of methyl donor SAM through a one-carbon metabolic network, thereby regulating the m6A modification and stability of c-myc mRNA in a METTL3/FTO/ALKBH5/IGF2BP2-dependent way. In vivo animal experiments also demonstrated that SHMT2 mediated MYC expression by m6A-methylation modification, thus boosting EC tumorigenesis. CONCLUSION In conclusion, our data illustrated that SHMT2 regulated malignant progression and immune escape of EC cell through c-myc m6A modification. These revealed mechanisms related to SHMT2 in EC and maybe offer promise for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Zhe Qiao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, 710004, Xi'an, Shaanxi, China
| | - Yu Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, 710004, Xi'an, Shaanxi, China
| | - Yao Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, 710004, Xi'an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, 710004, Xi'an, Shaanxi, China
| | - Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, 710004, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Kim TW, Ji H, Yun NH, Shin CH, Kim HH, Cho YB. Two antisense RNAs-AFAP1-AS1 and MLK7-AS1-promote colorectal cancer progression by sponging miR-149-5p and miR-485-5p. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:305-320. [PMID: 37547289 PMCID: PMC10400868 DOI: 10.1016/j.omtn.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Antisense RNAs (asRNAs) are closely associated with cancer malignancy. This study aimed to identify the action mechanism of asRNAs in controlling CRC malignancy. Analysis of the RNA sequencing data revealed that AFAP1-AS1 and MLK7-AS1 were upregulated in CRC patients and cell lines. High levels of both asRNAs were associated with poor prognosis in patients with CRC. Both in vitro and in vivo experiments revealed that the knockdown of the two asRNAs decreased the proliferative and metastatic abilities of CRC cells. Mechanistically, AFAP1-AS1 and MLK7-AS1 decreased the levels of miR-149-5p and miR-485-5p by functioning as ceRNAs. Overexpression of miRNAs by introducing miRNA mimics suppressed the expression of SHMT2 and IGFBP5 by directly binding to the 3' UTR of their mRNA. Knockdown of both asRNAs decreased the expression of SHMT2 and IGFBP5, which was reversed by inhibition of both miRNAs by miRNA inhibitors. In vivo pharmacological targeting of both asRNAs by small interfering RNA-loaded nanoparticles showed that knockdown of asRNAs significantly reduced tumor growth and metastasis. Our findings demonstrate that AFAP1-AS1 and MLK7-AS1 promote CRC progression by sponging the tumor-suppressing miRNAs miR-149-5p and miR-485-5p, thus upregulating SHMT2 and IGFBP5.
Collapse
Affiliation(s)
- Tae Won Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Haein Ji
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Nak Hyeon Yun
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Chang Hoon Shin
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Yong Beom Cho
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
7
|
Ma W, Liu R, Zhao K, Zhong J. Vital role of SHMT2 in diverse disease. Biochem Biophys Res Commun 2023; 671:160-165. [PMID: 37302290 DOI: 10.1016/j.bbrc.2023.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
One-carbon metabolism is essential for our human cells to carry out nucleotide synthesis, methylation, and reductive metabolism through one-carbon units, and these pathways ensure the high proliferation rate of cancer cells. Serine hydroxymethyltransferase 2 (SHMT2) is a key enzyme in one-carbon metabolism. This enzyme can convert serine into a one-carbon unit bound to tetrahydrofolate and glycine, ultimately supporting the synthesis of thymidine and purines and promoting the growth of cancer cells. Due to SHMT2's crucial role in the one-carbon cycle, it is ubiquitous in human cells and even in all organisms and highly conserved. Here, we summarize the impact of SHMT2 on the progression of various cancers to highlight its potential use in the development of cancer treatments.
Collapse
Affiliation(s)
- Wenqi Ma
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Ronghan Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Kai Zhao
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Jiangbo Zhong
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China.
| |
Collapse
|
8
|
Wang W, Wang M, Du T, Hou Z, You S, Zhang S, Ji M, Xue N, Chen X. SHMT2 Promotes Gastric Cancer Development through Regulation of HIF1α/VEGF/STAT3 Signaling. Int J Mol Sci 2023; 24:ijms24087150. [PMID: 37108312 PMCID: PMC10138966 DOI: 10.3390/ijms24087150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The metabolic enzymes involved in one-carbon metabolism are closely associated with tumor progression and could be potential targets for cancer therapy. Recent studies showed that serine hydroxymethyltransferase 2 (SHMT2), a crucial enzyme in the one-carbon metabolic pathway, plays a key role in tumor proliferation and development. However, the precise role and function of SHMT2 in gastric cancer (GC) remain poorly understood. In this study, we presented evidence that SHMT2 was necessary for hypoxia-inducible factor-1α (HIF1α) stability and contributed to GC cells' hypoxic adaptation. The analysis of datasets retrieved from The Cancer Genome Atlas and the experimentation with human cell lines revealed a marked increase in SHMT2 expression in GC. The SHMT2 knockdown in MGC803, SGC7901, and HGC27 cell lines inhibited cell proliferation, colony formation, invasion, and migration. Notably, SHMT2 depletion disrupted redox homeostasis and caused glycolytic function loss in GC cells under hypoxic circumstances. Mechanistically, we discovered SHMT2 modulated HIF1α stability, which acted as a master regulator of hypoxia-inducible genes under hypoxic conditions. This, in turn, regulated the downstream VEGF and STAT3 pathways. The in vivo xenograft experiments showed that SHMT2 knockdown markedly reduced GC growth. Our results elucidate the novel function of SHMT2 in stabilizing HIF1α under hypoxic conditions, thus providing a potential therapeutic strategy for GC treatment.
Collapse
Affiliation(s)
- Weida Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| | - Mingjin Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| | - Tingting Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| | - Zhenyan Hou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| | - Shen You
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| | - Sen Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| | - Ming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| | - Nina Xue
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| | - Xiaoguang Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| |
Collapse
|