1
|
Zhang Z, Zou W, Wang H, Du Z, Zhang C. Facile synthesis and biomimetic amine-functionalization of chitosan foam for CO 2 capture. Int J Biol Macromol 2024; 282:136870. [PMID: 39454898 DOI: 10.1016/j.ijbiomac.2024.136870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
A high-performance biomass-based adsorption materials could be the promising trend for CO2 capture and storage technology. However, the direct application of biomass-based porous materials as a CO2 adsorbent with enhanced performance is an emerging issue. Herein, a facile synthesis and a biomimetic strategy were combined to prepare amine-functionalized chitosan foam for CO2 capture, and then a porous biomass is achieved for the application on the environment protection field. Firstly, the chitosan foam was synthesized by the emulsion-templating method at room temperature. Depended on stabilizing n-octane in the chitosan hydrogel with Span 80, a tunable three-dimensional network porous structure was obtained. Subsequently, co-deposition with dopamine (DA) and polyethyleneimine (PEI) was applied to load abundant amine content on the surface of chitosan foam and thereby improving CO2 adsorption capacity. Finally, the as-prepared amine-functionalized chitosan foam exhibited the impressive adsorption capacity of 3.59 mmol/g at 333 K and atmospheric pressure, and the better adsorption selectivity and stability. The results extend the preparation approach of biomass porous materials, and also its application in CO2 adsorption technology.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wei Zou
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Changzhou Advanced Materials Research Institute, Beijing University of Chemical Technology, Jiangsu 213164, PR China
| | - Hong Wang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhongjie Du
- Sinochem Holdings Corporation Ltd., Beijing 100031, PR China
| | - Chen Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
2
|
Upadhyay A, Alimohammadi F, Tehrani R. Engineering Porosity-Tuned Chitosan Beads: Balancing Porosity, Kinetics, and Mechanical Integrity. ACS OMEGA 2024; 9:33857-33867. [PMID: 39130593 PMCID: PMC11307309 DOI: 10.1021/acsomega.4c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024]
Abstract
Chitosan, a cationic natural polysaccharide derived from the deacetylation of chitin, is known for its solubility in diluted acidic solutions, biodegradability, biocompatibility, and nontoxicity. This study introduces three innovative methods for preparing various types of porous chitosan beads: solvent extraction, surfactant extraction, and substance decomposition. These methods involve the integration and subsequent extraction or decomposition of materials during the synthesis process, eliminating the need for additional steps. We used state-of-the-art characterization techniques to analyze and evaluate the chemical and physical properties of the beads, such as Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and three-dimensional (3D) computed tomography (CT) scanning. The 3D CT scans visualized and measured the porosity of different bead types, ranging from 68.4% to 39.3%. This study also evaluated the mechanical properties of the particle beads under compressive forces in both wet and dry conditions, highlighting the influence of porosity on their mechanical integrity and compression pressure behavior. The adsorptive properties of these chitosan beads were studied using methylene blue as a model pollutant, emphasizing the importance of balancing porous structure, surface area, kinetics, and structural integrity. This study paves the way for the development of environmentally sustainable polymeric beads, highlighting the crucial need to balance porosity, surface area, and structural integrity to optimize their effectiveness in real-world applications.
Collapse
Affiliation(s)
| | | | - Rouzbeh Tehrani
- Department of Civil and Environmental
Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
3
|
Fekete E, Csiszár E. Chitosan-Alginate Gels for Sorption of Hazardous Materials: The Effect of Chemical Composition and Physical State. Int J Mol Sci 2024; 25:8406. [PMID: 39125991 PMCID: PMC11312824 DOI: 10.3390/ijms25158406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Chitosan, alginate, and chitosan-alginate (50:50) mixed hydrogels were prepared by freeze casting, freeze-drying, and subsequent physical cross-linking. Chitosan was cross-linked with citrate and alginate with calcium ions, while the mixed gels were cross-linked with both cross-linking agents. Both cryogels and xerogels were obtained by lyophilization and drying of the hydrogels. We investigated the effect of the chemical composition and the physical state of gels on the gel structure and sorption of model dyes. Alginate and mixed gels cross-linked with Ca2+ ions sorbed 80-95% of cationic dye from the solutions. The chitosan gels are primarily capable of adsorbing anionic dyes, but at near-neutral pH, their capacity is lower than that of alginate gels, showing 50-60% dye sorption. In the case of alginate gels, the dye sorption capacity of xerogels, cryogels, and hydrogels was the same, but for chitosan gels, the hydrogels adsorbed slightly less dye than the dried gels.
Collapse
Affiliation(s)
- Erika Fekete
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary;
| | - Emília Csiszár
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary;
| |
Collapse
|
4
|
Cui HS, Wu ZR, Shi XY, Dong GQ, Ding SN, Bao N, Yu CM, Wu ZQ. CS/PVP Hydrogel-Based Nanocapillary for Monitoring Bacterial Growth and Rapid Antibiotic Susceptibility Testing. ACS Sens 2024; 9:3540-3548. [PMID: 38908004 DOI: 10.1021/acssensors.4c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Infection with drug-resistant bacteria poses a significant threat to human health. Judicious use of antibiotics could reduce the likelihood of bacterial resistance, which can be evaluated through antibiotic susceptibility testing (AST). This paper focuses on the application of a needle-like nanocapillary tip filled with chitosan (CS)/polyethylene pyrrolidone (PVP) hydrogel based on its specific pH-sensitive properties. The gel-filled nanocapillary has the potential to be used for electrical pH detection with a sensitivity of 3.06 nA/pH and a linear range from 7.3 to 4.3. Such sensitivity for pH measurement could be extended for monitoring of bacterial (such as Escherichia coli and Streptococcus salivarius) growth because of the relationship between pH and bacterial growth. Bacterial growth curves obtained using the hydrogel-filled nanocapillary showed good agreement with the OD600 method. Moreover, this device could be applied for rapid AST for tetracycline and norfloxacin on E. coli with minimum inhibitory concentrations of 2 and 0.125 μg/mL, respectively. This study expands the application of the hydrogel-based nanocapillary for bacterial research by monitoring changes in pH values.
Collapse
Affiliation(s)
- Hai-Shan Cui
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Zhang-Rong Wu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Yan Shi
- Nantong Stomatological Hospital, Nantong, Jiangsu 226019, China
| | - Gang-Qiang Dong
- Amway (China) Botanical R&D Center, Wuxi, Jiangsu 214115, China
| | - Shou-Nian Ding
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chun-Mei Yu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Zeng-Qiang Wu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
5
|
Hazrati R, Alizadeh E, Soltani S, Keyhanvar P, Davaran S. Development of a Composite Hydrogel Containing Statistically Optimized PDGF-Loaded Polymeric Nanospheres for Skin Regeneration: In Vitro Evaluation and Stem Cell Differentiation Studies. ACS OMEGA 2024; 9:15114-15133. [PMID: 38585049 PMCID: PMC10993260 DOI: 10.1021/acsomega.3c09391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is a polypeptide growth factor generated by platelet granules faced to cytokines. It plays a role in forming and remodeling various tissue types, including epithelial tissue, through interaction with cell-surface receptors on most mesenchymal origin cells. However, it breaks down quickly in biological fluids, emphasizing the importance of preserving them from biodegradation. To address this challenge, we formulated and evaluated PDGF-encapsulated nanospheres (PD@PCEC) using polycaprolactone-polyethylene glycol-polycaprolactone. PD@PCECs were fabricated through the triple emulsion methodology and optimized by using the Box-Behnken design. The encapsulation efficiency (EE) of nanoencapsulated PDGF-BB was investigated concerning four variables: stirring rate (X1), stirring duration (X2), poly(vinyl alcohol) concentration (X3), and PDGF-BB concentration (X4). The selected optimized nanospheres were integrated into a gelatin-collagen scaffold (PD@PCEC@GC) and assessed for morphology, biocompatibility, in vitro release, and differentiation-inducing activity in human adipose-derived stem cells (hADSCs). The optimized PD@PCEC nanospheres exhibited a particle size of 177.9 ± 91 nm, a zeta potential of 5.2 mV, and an EE of 87.7 ± 0.44%. The release profile demonstrated approximately 85% of loaded PDGF-BB released during the first 360 h, with a sustained release over the entire 504 h period, maintaining bioactivity of 87.3%. The study also included an evaluation of the physicochemical properties of the scaffolds and an assessment of hADSC adhesion to the scaffold's surface. Additionally, hADSCs cultivated within the scaffold effectively differentiated into keratinocyte-like cells (KLCs) over 21 days, evidenced by morphological changes and upregulation of keratinocyte-specific genes, including cytokeratin 18, cytokeratin 19, and involucrin, at both transcriptional and protein levels.
Collapse
Affiliation(s)
- Raheleh Hazrati
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
- Research
Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Effat Alizadeh
- Department
of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51664-15731, Iran
| | - Somaieh Soltani
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
| | - Peyman Keyhanvar
- Department
of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51664-15731, Iran
| | - Soodabeh Davaran
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
- Research
Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| |
Collapse
|
6
|
Polez RT, Ajiboye MA, Österberg M, Horn MM. Chitosan hydrogels enriched with bioactive phloroglucinol for controlled drug diffusion and potential wound healing. Int J Biol Macromol 2024; 265:130808. [PMID: 38490386 DOI: 10.1016/j.ijbiomac.2024.130808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
We report a facile strategy to prepare chitosan (CS) hydrogels that eliminates the need for chemical crosslinking for advanced biomedical therapies. This approach gives controlled properties to the hydrogels by incorporating a natural bioactive phenolic compound, phloroglucinol (PG), into their microstructure. The adsorption of PG onto CS chains enhanced the hydrogels' antioxidant activity by up to 25 % and resulted in a denser, more entangled structure, reducing the pore size by 59 μm while maintaining porosity above 94 %. This allowed us to finely adjust pore size and swelling capacity. These structural properties make these hydrogels well-suited for wound healing dressings, promoting fibroblast proliferation and exhibiting excellent hemocompatibility. Furthermore, to ensure the versatility of these hydrogels, herein, we demonstrate their potential as drug delivery systems, particularly for dermal infections. The drug release can be controlled by a combination of drug diffusion through the swollen hydrogel and relaxation of the CS chains. In summary, our hydrogels leverage the synergistic effects of CS's antibacterial and antifungal properties with PG's antimicrobial and anti-inflammatory attributes, positioning them as promising candidates for biomedical and pharmaceutical applications, more specifically in advanced wound healing therapies with local drug delivery.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Margaret A Ajiboye
- Physical Chemistry of Nanomaterials, Institute of Chemistry, University of Kassel, 34109 Kassel, Germany
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Marilia M Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry, University of Kassel, 34109 Kassel, Germany.
| |
Collapse
|
7
|
Rahman MM. Waste biomass derived chitosan-natural clay based bionanocomposites fabrication and their potential application on wastewater purification by continuous adsorption: A critical review. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2024; 48:214-236. [DOI: 10.1016/j.sajce.2024.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
|
8
|
Escobar Jaramillo M, Covarrubias C, Patiño González E, Ossa Orozco CP. Optimization by mixture design of chitosan/multi-phase calcium phosphate/BMP-2 biomimetic scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 2024; 152:106423. [PMID: 38290393 DOI: 10.1016/j.jmbbm.2024.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
The modulation of cell behavior during culture is one of the most important aspects of bone tissue engineering because of the necessity for a complex mechanical and biochemical environment. This study aimed to improve the physicochemical properties of chitosan/multi-phase calcium phosphate (MCaP) scaffolds using an optimized mixture design experiment and evaluate the effect of biofunctionalization of the obtained scaffolds with the bone morphogenetic protein BMP-2 on stem cell behavior. The present study evaluated the compressive strength, elastic modulus, porosity, pore diameter, and degradation in simulated body fluids and integrated these responses using desirability. The properties of the scaffolds with the best desirability (18.4% of MCaP) were: compressive strength of 23 kPa, elastic modulus of 430 kPa, pore diameter of 163 μm, porosity of 92%, and degradation of 20% after 21 days. Proliferation and differentiation experiments were conducted using dental pulp stem cells after grafting BMP-2 onto scaffolds via the carbodiimide route. These experiments showed that MCaP promoted cell proliferation and increased alkaline phosphatase activity, whereas BMP-2 enhanced cell differentiation. This study demonstrates that optimizing the composition of a mixture of chitosan and MCaP improves the physicochemical and biological properties of scaffolds, indicating that this solution is viable for application in bone tissue engineering.
Collapse
Affiliation(s)
- Mateo Escobar Jaramillo
- Grupo de Investigación en Biomateriales, Programa de Bioingeniería, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Antioquia, Colombia.
| | - Cristian Covarrubias
- Laboratorio de Nanobiomateriales, Universidad de, Chile, Santiago de Chile, Chile
| | - Edwin Patiño González
- Grupo de Bioquímica Estructural de Macromoléculas, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Claudia Patricia Ossa Orozco
- Grupo de Investigación en Biomateriales, Programa de Bioingeniería, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Antioquia, Colombia
| |
Collapse
|
9
|
Janik W, Jakubski Ł, Kudła S, Dudek G. Modified polysaccharides for food packaging applications: A review. Int J Biol Macromol 2024; 258:128916. [PMID: 38134991 DOI: 10.1016/j.ijbiomac.2023.128916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Development of new food packaging materials is crucial to reduce the use of single-use plastics and to limit their destructive impact on the environment. Polysaccharides provide an alternative solution to this problem. This paper summarizes and discusses recent research results on the potential of modifying polysaccharides as materials for film and coating applications. Modifications of polysaccharides significantly affect their properties, as well as their application usability. Although modifications of biopolymers for packaging applications have been widely studied, polysaccharides have attracted little attention despite being a prospective, environmentally friendly, and economically viable packaging alternative. Therefore, this paper discusses approaches to the development of biodegradable, polysaccharide-based food packaging materials and focuses on modifications of four polysaccharides, such as starch, chitosan, sodium alginate and cellulose. In addition, these modifications are presented not only in terms of the selected polysaccharide, but also in terms of specific properties, i.e. hydrophilic, barrier and mechanical properties, of polysaccharides. Such a presentation of results makes it much easier to select the modification method to improve the unsatisfactory properties of the material. Moreover, very often it happens that the applied modification improves one and worsens another property, which is also presented in this review.
Collapse
Affiliation(s)
- Weronika Janik
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; Department of Physical Chemistry and Technology of Polymers, Joint Doctoral School, Silesian University of Technology, Akademicka 2a, 44-100 Gliwice, Poland.
| | - Łukasz Jakubski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Stanisław Kudła
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| |
Collapse
|
10
|
Kluczka J. Chitosan: Structural and Chemical Modification, Properties, and Application. Int J Mol Sci 2023; 25:554. [PMID: 38203726 PMCID: PMC10779193 DOI: 10.3390/ijms25010554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan is a polymer of natural origins that possesses many favourable properties [...].
Collapse
Affiliation(s)
- Joanna Kluczka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland
| |
Collapse
|
11
|
Vaz LM, Branco R, Morais PV, Guiomar AJ. Sterilized Polyhexanide-Releasing Chitosan Membranes with Potential for Use in Antimicrobial Wound Dressings. MEMBRANES 2023; 13:877. [PMID: 37999363 PMCID: PMC10673555 DOI: 10.3390/membranes13110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
Wound infection is a common complication of chronic wounds. It can impair healing, which may not occur without external help. Antimicrobial dressings (AMDs) are a type of external help to infected chronic wounds. In this study, highly porous membranes made of only chitosan and containing the antiseptic polyhexanide (poly(hexamethylene biguanide); PHMB) were prepared by cryogelation, aiming to be used in AMDs. These membranes exhibited a water swelling capacity of 748%, a water drop penetration time of 11 s in a dry membrane and a water vapor transmission rate of 34,400 g H2O/m2/24 h when in contact with water. The best drug loading method involved simultaneous loading by soaking in a PHMB solution and sterilization by autoclaving, resulting in sterilized, drug-loaded membranes. When these membranes and a commercial PHMB-releasing AMD were assayed under the same conditions, albeit far from the in vivo conditions, their drug release kinetics were comparable, releasing PHMB for ca. 6 and 4 h, respectively. These membranes exhibited high antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, which are bacterial species commonly found in infected wounds and blood clotting activity. The obtained results suggest that these membranes may have potential for use in the development of AMDs.
Collapse
Affiliation(s)
- Luís M. Vaz
- Chemical Process Engineering and Forest Products Research Centre, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Rita Branco
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (R.B.); (P.V.M.)
| | - Paula V. Morais
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (R.B.); (P.V.M.)
| | - António Jorge Guiomar
- Chemical Process Engineering and Forest Products Research Centre, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| |
Collapse
|
12
|
Lekhavadhani S, Shanmugavadivu A, Selvamurugan N. Role and architectural significance of porous chitosan-based scaffolds in bone tissue engineering. Int J Biol Macromol 2023; 251:126238. [PMID: 37567529 DOI: 10.1016/j.ijbiomac.2023.126238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
In designing and fabricating scaffolds to fill the bone defects and stimulate new bone formation, the biomimetics of the construct is a crucial factor in invoking the bone microenvironment to promote osteogenic differentiation. Regarding structural traits, changes in porous characteristics of the scaffolds, such as pore size, pore morphology, and percentage porosity, may patronize or jeopardize their other physicochemical and biological properties. Chitosan (CS), a biodegradable naturally occurring polymer, has recently drawn considerable attention as a scaffolding material in tissue engineering and regenerative medicine. CS-based microporous scaffolds have been reported to aid osteogenesis under both in vitro and in vivo conditions by supporting cellular attachment and proliferation of osteoblast cells and the formation of mineralized bone matrix. This related notion may be found in numerous earlier research, even though the precise mechanism of action that encourages the development of new bone still needs to be understood completely. This article presents the potential correlations and the significance of the porous properties of the CS-based scaffolds to influence osteogenesis and angiogenesis during bone regeneration. This review also goes over resolving the mechanical limitations of CS by blending it with other polymers and ceramics.
Collapse
Affiliation(s)
- Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
13
|
Sanjarnia P, Nourmohammadi J, Hesaraki S. Nanocomposite chitosan dressing incorporating polydopamine‑copper Janus nanoparticle. Int J Biol Macromol 2023; 251:126173. [PMID: 37558027 DOI: 10.1016/j.ijbiomac.2023.126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
This research aims to introduce a new wound dressing with antibacterial and anti-inflammatory properties made from chitosan and copper-containing Janus nanoparticles (JNPs). The JNPs were synthesized by attaching copper to PDA nanospheres, which were then embedded in Chitosan at different concentrations. The resulting spherical JNPs had a mean size of 208 ± 96 nm, and EDX mapping showed successful adhesion of Cu2+ ions to PDA nanospheres with a total Cu2+ content of 16.5 wt%. The samples exhibited interconnected porous structures, increasing JNPs concentration resulting in larger pore size and higher porosity. The addition of JNPs to 10 % (Ch-JNP 10) resulted in the highest strength, young modulus, and crystallinity, while a reverse trend was observed at higher JNPs content. JNPs improve the antibacterial activity of chitosan-based dressing, especially against E. coli. All samples were biocompatible and did not exhibit any cytotoxic effects. Ch-JNP10 had higher cellular density, confluency, and collagen secretion than other samples. The in vivo study demonstrated that Ch-JNP10 induced epithelialization and oriented collagen fiber formation while reducing inflammation. Overall, Ch-JNP10 may be a potential wound dressing for chronic wounds.
Collapse
Affiliation(s)
- Pegah Sanjarnia
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran.
| | - Saeed Hesaraki
- Biomaterials Group, Nanotechnology, and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| |
Collapse
|
14
|
Novella I, Rupaedah B, Eddy DR, Suryana, Irwansyah FS, Noviyanti AR. The Influence of Polyvinyl Alcohol Porogen Addition on the Nanostructural Characteristics of Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6313. [PMID: 37763589 PMCID: PMC10532944 DOI: 10.3390/ma16186313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Hydroxyapatite (HA) is a porous material widely developed in various research fields because of its high biodegradability, biocompatibility, and low toxicity. In this research, HA was synthesized using a hydrothermal method with chicken eggshells as a calcium source and various concentrations of polyvinyl alcohol as a porogen (2.5%, 5.0%, and 7.5% by wt). The structure and morphology of HA were determined by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. HA was obtained with varying concentrations of polyvinyl alcohol (PVA) porogen according to Inorganic Crystal Structure Database (ICSD) standard. Based on analysis using a refinement method, changes in unit cell parameters (cell volume and lattice strain) of HA synthesized using PVA porogen compared to the standard, the chi square (χ2) and index of R values were relatively low, validating the acceptable of the data. In addition, HA [Ca10(PO4)6(OH)2] with hexagonal structure and the P63/m space group was successfully obtained. Morphological analysis of HA by SEM found that HA has a spherical shape, and the porosity of HA increases with increasing concentrations of polyvinyl alcohol. The highest porosity was obtained with an addition of 5.0 wt% of PVA porogen (HAP3), reaching 69.53%.
Collapse
Affiliation(s)
- Indrika Novella
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
| | - Bedah Rupaedah
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor Km. 46, Bogor 16911, Indonesia;
| | - Diana Rakhmawaty Eddy
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
| | - Suryana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| | - Ferli Septi Irwansyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
- Department of Chemistry Education, UIN Sunan Gunung Djati, Bandung Jl. A.H. Nasution No. 105, Bandung 40614, Indonesia
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
| |
Collapse
|
15
|
Ye R, Liu S, Zhu W, Li Y, Huang L, Zhang G, Zhang Y. Synthesis, Characterization, Properties, and Biomedical Application of Chitosan-Based Hydrogels. Polymers (Basel) 2023; 15:2482. [PMID: 37299281 PMCID: PMC10255636 DOI: 10.3390/polym15112482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The prospective applications of chitosan-based hydrogels (CBHs), a category of biocompatible and biodegradable materials, in biomedical disciplines such as tissue engineering, wound healing, drug delivery, and biosensing have garnered great interest. The synthesis and characterization processes used to create CBHs play a significant role in determining their characteristics and effectiveness. The qualities of CBHs might be greatly influenced by tailoring the manufacturing method to get certain traits, including porosity, swelling, mechanical strength, and bioactivity. Additionally, characterization methods aid in gaining access to the microstructures and properties of CBHs. Herein, this review provides a comprehensive assessment of the state-of-the-art with a focus on the affiliation between particular properties and domains in biomedicine. Moreover, this review highlights the beneficial properties and wide application of stimuli-responsive CBHs. The main obstacles and prospects for the future of CBH development for biomedical applications are also covered in this review.
Collapse
Affiliation(s)
- Ruixi Ye
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Siyu Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Wenkai Zhu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Yurong Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Long Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 299 Bayi Road, Wuhan 430072, China;
| | - Guozheng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China
| |
Collapse
|
16
|
Attallah AG, Prucnal S, Buttering M, Hirschmann E, Koehler N, Schulz SE, Wagner A, Liedke MO. Millisecond flash lamp curing for porosity generation in thin films. Sci Rep 2023; 13:7765. [PMID: 37173360 PMCID: PMC10181987 DOI: 10.1038/s41598-023-34748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Flash lamp annealing (FLA) with millisecond pulse durations is reported as a novel curing method for pore precursor's degradation in thin films. A case study on the curing of dielectric thin films is presented. FLA-cured films are being investigated by means of positron annihilation spectroscopy (PAS) and Fourier-transform infrared (FTIR) spectroscopy in order to quantify the nm-scale porosity and post-treatment chemistry, respectively. Results from positron annihilation reveal the onset of the formation of porous voids inside the samples at 6 ms flash treatment time. Moreover, parameter's adjustment (flash duration and energy density) allows for identifying the optimum conditions of effective curing. Within such a systematic investigation, positron results indicate that FLA is able to decompose the porogen (pore precursors) and to generate interconnected (open porosity) or isolated pore networks with self-sealed pores in a controllable way. Furthermore, FTIR results demonstrate the structural evolution after FLA, that help for setting the optimal annealing conditions whereby only a residual amount of porogen remains and at the same time a well-densified matrix, and a hydrophobic porous structures are created. Raman spectroscopy suggests that the curing-induced self-sealing layer developed at the film surface is a graphene oxide-like layer, which could serve as the outside sealing of the pore network from intrusions.
Collapse
Affiliation(s)
- Ahmed G Attallah
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
- Physics Department, Faculty of Science, Minia University, Minia, 61519, Egypt.
| | - Slawomir Prucnal
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Maik Buttering
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Eric Hirschmann
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Nicole Koehler
- Center for Microtechnologies, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Stefan E Schulz
- Center for Microtechnologies, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Andreas Wagner
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Maciej O Liedke
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
| |
Collapse
|