1
|
Rodríguez Silva J, Monsalves-Álvarez M, Sepúlveda C, Donoso-Barraza C, Troncoso R, Hirsch S. Folate induces stemness and increases oxygen consumption under glucose deprivation by notch-1 pathway activation in colorectal cancer cell. Mol Cell Biochem 2025; 480:505-519. [PMID: 38536555 DOI: 10.1007/s11010-024-04987-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/09/2024] [Indexed: 01/03/2025]
Abstract
Evidence for folate's protective effects on neural tube defects led the USA and Chile to start mandatory folic acid (FA) fortification programs, decreasing up to 50%. However, ∼30% of the population consuming fortified foods reach supraphysiologic serum levels. Although controversial, several epidemiological and clinical observations suggest that folate increases cancer risk, giving concern about the risks of FA supplementation. The Cancer stem cells (CSCs) model has been used to explain survival to anticancer therapies. The Notch-1 pathway plays a role in several cancers and is associated with the stemness process. Different studies show that modulation of metabolic pathways regulates stemness capacity in cancer. Supraphysiologic concentrations of FA increase the proliferation of HT-29 cells by Notch-1 activation. However, whether folate can induce a stemness-like phenotype in cancer is not known. We hypothesized that FA protects from glucose deprivation-induced cell death through Notch-1 activation. HT-29 cells were challenged with glucose deprivation at basal (20 nM) and supraphysiological (400 nM) FA and 5-MTHF concentrations. We analyzed changes in stemness-like gene expression, cell death and different energetic metabolic functions. Supraphysiological concentrations of FA increased stemness-like genes, and improved survival and oxygen consumption, inducing AMPK phosphorylation and HSP-70 protein expression. We evaluated the Notch-1 pathway using the DAPT and siRNA as inhibitors, decreasing the stemness-like gene expression and preventing the FA protection against glucose deprivation-induced cell death. Moreover, they decreased oxygen consumption and AMPK phosphorylation. These results suggest that FA protects against glucose deprivation. These effects were associated with AMPK activation, a critical metabolic mediator in nutrient consumption and availability that activates the Notch-1 pathway.
Collapse
Affiliation(s)
- Juan Rodríguez Silva
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| | - Matías Monsalves-Álvarez
- Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Carlos Sepúlveda
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Camila Donoso-Barraza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Sandra Hirsch
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Moldvai D, Sztankovics D, Dankó T, Vetlényi E, Petővári G, Márk Á, Patonai A, Végső G, Piros L, Hosszú Á, Pápay J, Krencz I, Sebestyén A. Tumorigenic role of tacrolimus through mTORC1/C2 activation in post-transplant renal cell carcinomas. Br J Cancer 2024; 130:1119-1130. [PMID: 38341510 PMCID: PMC10991560 DOI: 10.1038/s41416-024-02597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Kidney transplant recipients (KTRs) face an increased risk of renal cell carcinoma (RCC), in which the immunosuppressive regimen plays an important role. This study aimed to identify intracellular signalling alterations associated with post-transplant (post-tx) tumour formation. METHODS Expression of mTOR-related proteins were analysed in kidneys obtained from end-stage renal disease (ESRD) patients and RCCs developed in KTRs or non-transplant patients. The effects of tacrolimus (TAC) and rapamycin (RAPA) on mTOR activity, proliferation, and tumour growth were investigated through different in vitro and in vivo experiments. RESULTS Elevated mTORC1/C2 activity was observed in post-tx RCCs and in kidneys of TAC-treated ESRD patients. In vitro experiments demonstrated that TAC increases mTOR activity in a normal tubular epithelial cell line and in the investigated RCC cell lines, moreover, promotes the proliferation of some RCC cell line. In vivo, TAC elevated mTORC1/C2 activity in ischaemic kidneys of mice and enhanced tumour growth in xenograft model. CONCLUSIONS We observed significantly increased mTOR activity in ischaemic kidneys and post-tx RCCs, which highlights involvement of mTOR pathway both in the healing or fibrotic processes of kidney and in tumorigenesis. TAC-treatment further augmented the already elevated mTOR activity of injured kidney, potentially contributing to tumorigenesis during immunosuppression.
Collapse
Affiliation(s)
- Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Enikő Vetlényi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Ágnes Márk
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Attila Patonai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - Gyula Végső
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - László Piros
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - Ádám Hosszú
- Department of Paediatrics (Bókay street Unit), Semmelweis University, Üllői út. 26, H-1085, Budapest, Hungary
- MTA-SE Lendulet Diabetes Research Group, Bókay János utca 53-54., H-1083, Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary.
| |
Collapse
|
3
|
Sztankovics D, Moldvai D, Petővári G, Dankó T, Szalai F, Miyaura R, Varga V, Nagy N, Papp G, Pápay J, Krencz I, Sebestyén A. mTOR hyperactivity and RICTOR amplification as targets for personalized treatments in malignancies. Pathol Oncol Res 2024; 30:1611643. [PMID: 38515456 PMCID: PMC10954904 DOI: 10.3389/pore.2024.1611643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
The increasing knowledge of molecular alterations in malignancies, including mutations and regulatory failures in the mTOR (mechanistic target of rapamycin) signaling pathway, highlights the importance of mTOR hyperactivity as a validated target in common and rare malignancies. This review summarises recent findings on the characterization and prognostic role of mTOR kinase complexes (mTORC1 and mTORC2) activity regarding differences in their function, structure, regulatory mechanisms, and inhibitor sensitivity. We have recently identified new tumor types with RICTOR (rapamycin-insensitive companion of mTOR) amplification and associated mTORC2 hyperactivity as useful potential targets for developing targeted therapies in lung cancer and other newly described malignancies. The activity of mTOR complexes is recommended to be assessed and considered in cancers before mTOR inhibitor therapy, as current first-generation mTOR inhibitors (rapamycin and analogs) can be ineffective in the presence of mTORC2 hyperactivity. We have introduced and proposed a marker panel to determine tissue characteristics of mTOR activity in biopsy specimens, patient materials, and cell lines. Ongoing phase trials of new inhibitors and combination therapies are promising in advanced-stage patients selected by genetic alterations, molecular markers, and/or protein expression changes in the mTOR signaling pathway. Hopefully, the summarized results, our findings, and the suggested characterization of mTOR activity will support therapeutic decisions.
Collapse
|
4
|
Sztankovics D, Krencz I, Moldvai D, Dankó T, Nagy Á, Nagy N, Bedics G, Rókusz A, Papp G, Tőkés AM, Pápay J, Sápi Z, Dezső K, Bödör C, Sebestyén A. Novel RICTOR amplification harbouring entities: FISH validation of RICTOR amplification in tumour tissue after next-generation sequencing. Sci Rep 2023; 13:19610. [PMID: 37949943 PMCID: PMC10638425 DOI: 10.1038/s41598-023-46927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Alterations in mTOR signalling molecules, including RICTOR amplification, have been previously described in many cancers, particularly associated with poor prognosis. In this study, RICTOR copy number variation (CNV) results of diagnostic next-generation sequencing (NGS) were analysed in 420 various human malignant tissues. RICTOR amplification was tested by Droplet Digital PCR (ddPCR) and validated using the "gold standard" fluorescence in situ hybridisation (FISH). Additionally, the consequences of Rictor protein expression were also studied by immunohistochemistry. RICTOR amplification was presumed in 37 cases with CNV ≥ 3 by NGS, among these, 16 cases (16/420; 3.8%) could be validated by FISH, however, ddPCR confirmed only 11 RICTOR-amplified cases with lower sensitivity. Based on these, neither NGS nor ddPCR could replace traditional FISH in proof of RICTOR amplification. However, NGS could be beneficial to highlight potential RICTOR-amplified cases. The obtained results of the 14 different tumour types with FISH-validated RICTOR amplification demonstrate the importance of RICTOR amplification in a broad spectrum of tumours. The newly described RICTOR-amplified entities could initiate further collaborative studies with larger cohorts to analyse the prevalence of RICTOR amplification in rare diseases. Finally, our and further work could help to improve and expand future therapeutic opportunities for mTOR-targeted therapies.
Collapse
Affiliation(s)
- Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Ákos Nagy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Noémi Nagy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Gábor Bedics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - András Rókusz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Gergő Papp
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Anna-Mária Tőkés
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, 1091, Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Zoltán Sápi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary.
| |
Collapse
|
5
|
Endoplasmic Reticulum Stress in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24054914. [PMID: 36902344 PMCID: PMC10003093 DOI: 10.3390/ijms24054914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The endoplasmic reticulum is an organelle exerting crucial functions in protein production, metabolism homeostasis and cell signaling. Endoplasmic reticulum stress occurs when cells are damaged and the capacity of this organelle to perform its normal functions is reduced. Subsequently, specific signaling cascades, together forming the so-called unfolded protein response, are activated and deeply impact cell fate. In normal renal cells, these molecular pathways strive to either resolve cell injury or activate cell death, depending on the extent of cell damage. Therefore, the activation of the endoplasmic reticulum stress pathway was suggested as an interesting therapeutic strategy for pathologies such as cancer. However, renal cancer cells are known to hijack these stress mechanisms and exploit them to their advantage in order to promote their survival through rewiring of their metabolism, activation of oxidative stress responses, autophagy, inhibition of apoptosis and senescence. Recent data strongly suggest that a certain threshold of endoplasmic reticulum stress activation needs to be attained in cancer cells in order to shift endoplasmic reticulum stress responses from a pro-survival to a pro-apoptotic outcome. Several endoplasmic reticulum stress pharmacological modulators of interest for therapeutic purposes are already available, but only a handful were tested in the case of renal carcinoma, and their effects in an in vivo setting remain poorly known. This review discusses the relevance of endoplasmic reticulum stress activation or suppression in renal cancer cell progression and the therapeutic potential of targeting this cellular process for this cancer.
Collapse
|