1
|
Qin N, Liu H, Wang X, Liu Y, Chang H, Xia X. Sargassum fusiforme polysaccharides protect mice against Citrobacter rodentium infection via intestinal microbiota-driven microRNA-92a-3p-induced Muc2 production. Int J Biol Macromol 2025; 300:140271. [PMID: 39863236 DOI: 10.1016/j.ijbiomac.2025.140271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Sargassum fusiforme, widely consumed in Asian countries, has been proven to have various biological activities. However, the impacts and mechanisms of Sargassum fusiforme polysaccharides (SFPs) on intestinal bacterial infection are not yet fully understood. Our findings indicate that SFPs pretreatment ameliorates intestinal inflammation by reducing C. rodentium colonization, increasing colon length and levels of IL-10 and IL-22, decreasing IL-1β, IL-6, TNF-α, and IL-17 levels, inhibiting colonic crypt elongation and hyperplasia, and enhancing the intestinal mucosal barrier. The protective effects against intestinal bacterial infection are linked to enhanced clearance of C. rodentium and improvements in the intestinal mucosal barrier and C. rodentium-induced intestinal microbiota dysbiosis. Fecal microbiota transplantation experiments were conducted to evaluate the functional impact of microbiota induced by SFPs. The results suggest that intestinal microbiota modified by SFPs effectively countered C. rodentium infection. In addition, our study identified that miRNA-92a-3p is partially complementary to the 3'-UTR of the Notch1 gene, thereby repressing the Notch1-Hes1 signaling pathway and enhancing Muc2 secretion. Taken together, these findings reveal that SFPs protect mice from C. rodentium infection by activating the miR-92a-3p/Notch1-Hes1 regulatory axis driven by the intestinal microbiota, which stimulates Muc2 production to maintain intestinal barrier homeostasis.
Collapse
Affiliation(s)
- Ningbo Qin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hongxu Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinru Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hong Chang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Hou C, Yu Z, Shi C, Huang Y, Liu H. Brown Algae Polysaccharides Alleviate Diquat-Induced Oxidative Stress in Piglets and IPEC-J2 Cells via Nrf2/ARE Signaling Pathway. Animals (Basel) 2025; 15:559. [PMID: 40003040 PMCID: PMC11852254 DOI: 10.3390/ani15040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigated the effect of Brown algae polysaccharides (BAPs) on diquat-induced oxidative stress in piglets and IPEC-J2 cells through Nrf2/ARE signaling pathway. In the in vivo model, 24 male piglets of the Duroc × Landrace × Large White breed were selected and divided into 4 groups (n = 6), including the CON group (basal diet), DIQ group (10 mg/kg Diquat), BAP group (1000 mg/kg BAP), and BAP+DIQ group (1000 mg/kg BAP + 10 mg/kg Diquat). Compared with the DIQ group, BAP improved growth performance and the BAP+DIQ group reduced the levels of IL-1β, IL-6, TNF-α, and DAO in plasma, increased VH and VCR, improved jejunal tissue morphology, decreased MDA levels, and increased T-AOC (p < 0.05). Additionally, the BAP+DIQ group elevated mRNA levels of ZO-1, and enhanced the protein levels of Occludin, Claudin1, CAT, SOD1, and HO-1 (p < 0.05). In the in vitro model, the BAP+DIQ group decreased MDA levels, increased T-AOC, elevated mRNA levels of ZO-1, CAT and SOD2, as well as protein levels of Claudin1, SOD1, HO-1, and total Nrf2 compared with the DIQ group (p < 0.05). Furthermore, BAP increased nuclear Nrf2 protein levels, and promoted the translocation of Nrf2 from the cytoplasm to the nucleus compared with the DIQ group (p < 0.05). In conclusion, BAPs are crucial for enhancing piglets' antioxidant capacity via Nrf2 pathway activation. These findings highlight BAP's potential as a natural feed additive to mitigate oxidative stress and improve overall health in piglets. Further research is warranted to explore BAPs as a dietary supplement to support gut health and reduce oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Hu Liu
- College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (C.H.); (Z.Y.); (C.S.); (Y.H.)
| |
Collapse
|
3
|
Zheng W, Tang S, Ren X, Song S, Ai C. Fucoidan alleviated colitis aggravated by fiber deficiency through protecting the gut barrier, suppressing the MAPK/NF-κB pathway, and modulating gut microbiota and metabolites. Front Nutr 2025; 11:1462584. [PMID: 39925971 PMCID: PMC11802440 DOI: 10.3389/fnut.2024.1462584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025] Open
Abstract
Insufficient dietary fiber intake has become a global public health issue, affecting the development and management of various diseases, including intestinal diseases and obesity. This study showed that dietary fiber deficiency enhanced the susceptibility of mice to colitis, which could be attributed to the disruption of the gut barrier integrity, activation of the NF-κB pathway, and oxidative stress. Undaria pinnatifida fucoidan (UPF) alleviated colitis symptoms in mice that fed with a fiber deficient diet (FD), characterized by increased weight gain and reduced disease activity index, liver and spleen indexes, and histological score. The protective effect of UPF against FD-exacerbated colitis can be attributed to the alleviation of oxidative stress, the preservation of the gut barrier integrity, and inhibition of the MAPK/NF-κB pathway. UPF ameliorated the gut microbiota composition, leading to increased microbiota richness, as well as increased levels of Muribaculaceae, Lactobacillaceae, and Bifidobacterium and reduced levels of Proteobacteria, Bacteroidetes, and Bacteroides. Metabolomics analysis revealed that UPF improved the profile of microbiota metabolites, with increased levels of carnitine and taurine and decreased levels of tyrosine and deoxycholic acid. This study suggests that UPF has the potential to be developed as a novel prebiotic agent to enhance human health.
Collapse
Affiliation(s)
- Weiyun Zheng
- School of Agronomy and Life Science, Shanxi Datong University, Datong, China
| | - Shuangru Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaomeng Ren
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, China
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Hu ZY, Yang SJ, Chang YH, Wang XQ, Liu RQ, Jiang FW, Chen MS, Wang JX, Liu S, Zhu HM, Shi YS, Zhao Y, Li JL. AHR activation relieves deoxynivalenol-induced disruption of porcine intestinal epithelial barrier functions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136095. [PMID: 39395393 DOI: 10.1016/j.jhazmat.2024.136095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Mycotoxins are ubiquitous natural pollutants that pose a serious threat to public health. Deoxynivalenol (DON) as one of the most prominent mycotoxins has a noticeable adverse effect on intestinal barrier function, which depends on the intestinal barrier integrity. However, the potential mechanisms and effective therapeutic strategies remain unclear. Aryl hydrocarbon receptor (AHR) has been implicated in the modulation of intestinal barrier function and inflammation. The study aims to investigate the unique role of AHR in mediating DON-induced intestinal epithelial barrier function. In the current study, we revealed that DON triggered mitochondrial structural damage and functional impairment, leading to oxidative stress and apoptosis in porcine jejunal epithelial cells (IPEC-J2). DON altered the integrity of IPEC-J2 cells by disrupting the distribution and function of tight junction proteins. Additionally, DON activated TNF-α/NF-κB/MLCK signaling pathway, thereby eliciting inflammatory response. Notably, DON inhibited AHR nuclear translocation and attenuated xenobiotic response element promoter activity and its target genes. However, overexpression of AHR mitigated DON-induced disruption of intestinal epithelial barrier functions by suppressing TNF-α/NF-κB/MLCK pathway in IPEC-J2 cells. Our findings indicate that AHR regulates intestinal epithelial barrier function and therefore is a novel therapeutic molecule for intestinal disorders.
Collapse
Affiliation(s)
- Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shang-Jia Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan-Hang Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui-Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
5
|
Xu J, Xie L, Fan R, Shi X, Xu W, Dong K, Ma D, Yan Y, Zhang S, Sun N, Huang G, Gao M, Yu X, Wang M, Wang F, Chen J, Tao J, Yang Y. The role of dietary inflammatory index in metabolic diseases: the associations, mechanisms, and treatments. Eur J Clin Nutr 2024:10.1038/s41430-024-01525-6. [PMID: 39433856 DOI: 10.1038/s41430-024-01525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
In recent years, the prevalence of metabolic diseases has increased significantly, posing a serious threat to global health. Chronic low-grade inflammation is implicated in the development of most metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, dyslipidemia, and cardiovascular disease, serving as a link between diet and these conditions. Increasing attention has been directly toward dietary inflammatory patterns that may prevent or ameliorate metabolic diseases. The Dietary Inflammatory Index (DII) was developed to assess the inflammatory potential of dietary intake. Consequently, a growing body of research has examined the associations between the DII and the risk of several metabolic diseases. In this review, we explore the current scientific literature on the relationships between the DII, T2DM, obesity, and dyslipidemia. It summarizes recent findings and explore potential underlying mechanisms from two aspects: the interaction between diet and inflammation, and the link between inflammation and metabolic diseases. Furthermore, this review discusses the therapeutic strategies, including dietary modifications, prebiotics, and probiotics, and discusses the application of the DII in metabolic diseases, as well as future research directions.
Collapse
Affiliation(s)
- Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Yongli Yan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Nan Sun
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guomin Huang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Gao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Mei Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Fen Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Tao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China.
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China.
| |
Collapse
|
6
|
Chen L, Li J, Li Q, Sun Q. Hepatotoxicity Induced by Methyl Eugenol: Insights from Toxicokinetics, Metabolomics, and Gut Microbiota. Curr Issues Mol Biol 2024; 46:11314-11325. [PMID: 39451553 PMCID: PMC11506582 DOI: 10.3390/cimb46100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Due to continuous application as a flavoring agent in the pesticide, pharmaceutical, and food industries, methyl eugenol (ME) persists in the environment and causes deleterious impacts including cytotoxicity, genotoxicity, and liver damage. This study utilized a comprehensive approach, integrating toxicokinetics, metabolomics, and gut microbiota analysis, to explore the mechanisms behind ME-induced hepatotoxicity in mice. The study observed significant rises in ALT and AST levels, along with significant weight loss, indicating severe liver damage. Toxicokinetic data showed delayed Tmax and plasma accumulation after 28 days of repeated ME exposure at doses of 20 mg/kg, 40 mg/kg, and 60 mg/kg. The metabolomic analysis pinpointed four critical pathways-TCA cycle; alanine, aspartate, and glutamate metabolism; arginine biosynthesis; and tyrosine metabolism-linked to 20 potential biomarkers. Gut microbiota analysis revealed that extended ME exposure led to microbial imbalance, particularly altering the populations of Akkermansia, Prevotella, and Ruminococcus, which are key to amino acid metabolism and the TCA cycle, thus contributing to hepatotoxicity. However, the causal relationship between changes in gut microbiota and liver metabolite levels still requires further in-depth research. This study underscores the significant role of liver metabolites and gut microbiota in ME-induced liver damage.
Collapse
Affiliation(s)
| | | | | | - Qingwen Sun
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (L.C.); (J.L.); (Q.L.)
| |
Collapse
|
7
|
Teng Y, Li J, Guo J, Yan C, Wang A, Xia X. Alginate oligosaccharide improves 5-fluorouracil-induced intestinal mucositis by enhancing intestinal barrier and modulating intestinal levels of butyrate and isovalerate. Int J Biol Macromol 2024; 276:133699. [PMID: 38972652 DOI: 10.1016/j.ijbiomac.2024.133699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Chemotherapy-induced mucositis (CIM) is the typical side effect of chemotherapy. This study investigates the potential of alginate oligosaccharide (AOS) in ameliorating CIM induced by 5-fluorouracil (5-FU) in a murine model and its underlying mechanisms. AOS effectively mitigated body weight loss and histopathological damage, modulated inflammatory cytokines and attenuated the oxidative stress. AOS restored intestinal barrier integrity through enhancing expression of tight junction proteins via MLCK signaling pathway. AOS alleviated intestinal mucosal damage by inhibiting TLR4/MyD88/NF-κB signaling pathway, downregulating the pro-apoptotic protein Bax and upregulating the anti-apoptotic protein Bcl-2. Moreover, AOS significantly enriched intestinal Akkermansiaceae and increased the production of short-chain fatty acids (SCFAs), most notably butyrate and isovalerate. Pre-treatment with butyrate and isovalerate also alleviated 5-FU-induced CIM. In conclusion, AOS effectively mitigated CIM through strenghthening intestinal barrier, attenuating inflammation, and modulating gut microbiota and intestianl levels of butyrate and isovalerate. These finding indicate that AOS could be potentially utilized as a supplemental strategy for prevention or mitigation of CIM.
Collapse
Affiliation(s)
- Yue Teng
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jiahui Li
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jian Guo
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Chunhong Yan
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Ailing Wang
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaodong Xia
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
8
|
Fontes NFDA, Fernandes M, González-Ballesteros N, Rodríguez-Argüelles MC, Gomes AC, Duarte ASG. Exploring the Therapeutic Potential of Green-Synthesized Gold Nanoparticles and Ericaria selaginoides Extract for Inflammatory Bowel Disease. Antioxidants (Basel) 2024; 13:884. [PMID: 39199130 PMCID: PMC11351725 DOI: 10.3390/antiox13080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024] Open
Abstract
Addressing disease remission and treatment adherence in inflammatory bowel diseases (IBDs), such as Crohn's disease, poses significant challenges due to underlying oxidative and inflammatory processes. Nanotechnology emerges as a promising avenue for enhancing therapeutic outcomes in IBD by optimizing drug bioactivity, reducing toxicity, and extending circulation time. Gold nanoparticles, known for their resistance to gastrointestinal pH and possessing antioxidant and anti-inflammatory properties, offer particular promise. They can be produced by green synthesis with seaweed Ericaria selaginoides (ES), itself associated with gastroprotective and anti-inflammatory activities. In a murine model of Crohn's disease induced with 8% acetic acid, pretreatment with dexamethasone (0.2 mL/30 g) or Au@ES (25 and 50 mg/kg) effectively mitigated inflammatory features. Notably, ES (50 mg/kg) and Au@ES (50 mg/kg) administration resulted in significant reductions in both macroscopic and microscopic inflammation scores compared to the disease control group. Furthermore, these treatments normalized inflammatory cytokine expression while safeguarding myenteric plexus glial cells. They also impeded neutrophil activation, leading to reduced myeloperoxidase activity and lipid peroxidation, coupled with increased glutathione levels. In conclusion, ES and Au@ES exhibit potent efficacy in counteracting inflammation and oxidation processes in an experimental Crohn's disease model, suggesting their potential as alternative therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Nayana Freire de Almeida Fontes
- Departamento de Morfologia, Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Ceará, Fortaleza 60440-900, Brazil (A.S.G.D.)
| | - Mário Fernandes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antoniella Souza Gomes Duarte
- Departamento de Morfologia, Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Ceará, Fortaleza 60440-900, Brazil (A.S.G.D.)
| |
Collapse
|
9
|
Liu J, Xia W, Wu Q, Zhang Y, Wu Y, Li B, Chen F, Du X, Wu S, Yang Y, Gao Y, Wu M, Su L, Tong H. Fucoidan alleviates high sucrose-induced metabolic disorders and enhances intestinal homeostasis through modulation of Notch signaling. J Adv Res 2024:S2090-1232(24)00224-8. [PMID: 38825316 DOI: 10.1016/j.jare.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION The therapeutic potential of fucoidan (FUC), a natural polysaccharide, in metabolic disorders is recognized, yet its underlying mechanisms remain unclear. METHODS We conducted investigations into the therapeutic mechanisms of FUC sourced from Sargassum fulvellum concerning metabolic disorders induced by a high-sucrose diet (HSD), employing Drosophila melanogaster and mice models. Drosophila larvae were subjected to HSD exposure to monitor growth inhibition, reduced pupation, and developmental delays. Additionally, we examined the impact of FUC on growth- and development-related hormones in Drosophila. Furthermore, we assessed the modulation of larval intestinal homeostasis by FUC, focusing on the regulation of Notch signaling. In mice, we evaluated the effects of FUC on HSD-induced impairments in intestinal epithelial barrier integrity and gut hormone secretion. RESULTS FUC supplementation significantly enhanced pupal weight in Drosophila larvae and effectively countered HSD-induced elevation of glucose and triglyceride levels. It notably influenced the expression of growth- and development-related hormones, particularly augmenting insulin-like peptides production while mitigating larval growth retardation. FUC also modulated larval intestinal homeostasis by negatively regulating Notch signaling, thereby protecting against HSD-induced metabolic stress. In mice, FUC ameliorated HSD-induced impairments in ileum epithelial barrier integrity and gut hormone secretion. CONCLUSIONS Our findings demonstrate the multifaceted therapeutic effects of FUC in mitigating metabolic disorders and maintaining intestinal health. FUC holds promise as a therapeutic agent, with its effects attributed partly to the sulfate group and its ability to regulate Notch signaling, emphasizing its potential for addressing metabolic disorders.
Collapse
Affiliation(s)
- Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; Jiangxi Institute of Traditional Chinese Medicine Health Industry, Nanchang 330115, China
| | - Weiqiang Xia
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Fangyu Chen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xueting Du
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Siya Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Laijin Su
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| |
Collapse
|
10
|
Cotas J, Lomartire S, Pereira L, Valado A, Marques JC, Gonçalves AMM. Seaweeds as Nutraceutical Elements and Drugs for Diabetes Mellitus: Future Perspectives. Mar Drugs 2024; 22:168. [PMID: 38667785 PMCID: PMC11051413 DOI: 10.3390/md22040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Ana Valado
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro—SM Bispo, Apartado 7006, 3046-854 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society—CERNAS, Escola Superior Agrária de Coimbra Bencanta, 3045-601 Coimbra, Portugal
| | - João Carlos Marques
- MARE—Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Babich O, Ivanova S, Michaud P, Budenkova E, Kashirskikh E, Anokhova V, Sukhikh S. Fermentation of micro- and macroalgae as a way to produce value-added products. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00827. [PMID: 38234329 PMCID: PMC10793092 DOI: 10.1016/j.btre.2023.e00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Fermentation of both microalgae and macroalgae is one of the most efficient methods of obtaining valuable value-added products due to the minimal environmental pollution and the availability of economic benefits, as algae do not require arable land and drift algae and algal bloom biomass are considered waste and must be recycled and their fermentation waste utilized. The compounds found in algae can be effectively used in the fuel, food, cosmetic, and pharmaceutical industries, depending on the type of fermentation used. Products such as methane and hydrogen can be produced by anaerobic digestion and dark fermentation of algae, and lactic acid and its polymers can be produced by lactic acid fermentation of algae. Article aims to provide an overview of the different types potential of micro- and macroalgae fermentation, the advantages and disadvantages of each type considered, and the economic feasibility of algal fermentation for the production of various value-added products.
Collapse
Affiliation(s)
- Olga Babich
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | | | - Egor Kashirskikh
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Veronika Anokhova
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Stanislav Sukhikh
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| |
Collapse
|
12
|
Buryakov NP, Zaikina AS, Trukhachev VI, Buryakova MA, Kosolapova VG, Nikonov IN, Medvedev IK, Fathala MM, Aleshin DE. Influence of Dietary Addition of Mineral Shungite and Fucus vesiculosus on Production Performance, Egg Quality, Nutrients Digestibility, and Immunity Status of Laying Hens. Animals (Basel) 2023; 13:3176. [PMID: 37893901 PMCID: PMC10603752 DOI: 10.3390/ani13203176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The main purpose of this study was to assess the impact of using the thermally modified mineral adsorbent shungite (MAS) and the dried seaweed meal Fucus vesiculosus (DSM) with different doses in Brown Nick cross laying hens' diet on their productivity, nutrient digestibility, morphological and blood profile, immunity status, and egg quality. A total of 261,720 hens were used in this experiment at the age of 63 weeks, and they were randomly divided into 5 groups (feeding program) with six repetitions of 8724 chickens in each. The first served (control) as a control group where laying hens were fed the basal diet that was used on the farm only; the second and the third groups represented MAS+ and MAS++, where they received the basal diet supplemented by 0.1% and 0.25% (or 1.0 kg/t and 2.5 kg/t of feed) of the mineral adsorbent shungite (MAS) which was provided in the feed in powder form (5 microns) and was added to the feed at the feed mill; the fourth and fifth groups represented DSM+ and DSM++, which received the basal diet provided with 0.1% and 0.25% (or 1.0 kg/t and 2.5 kg/t of feed) of dried seaweed meal of F. vesiculosus algae (DSM). The average egg weight over the entire period of the experiment revealed significant differences between the experimental groups and represented in the control group 65.20 vs. 66.88, 66.87 and 68.10 and 68.13 g in the MAS+ and MAS++, and DSM+ and DSM++ groups, respectively. Once the dried seaweed meal F. vesiculosus (DSM) was used, the crude protein increased significantly (p < 0.05) in egg yolk by 2.64 and 2.67%, carotenoids by 1.13 and 1.20 mg/g DM. The inclusion of both MAS and DSM feed additives revealed a significant decrease in the level of crude fat (lipids) in their liver when compared with the control group. The level of erythrocytes (RBCs) increased (p < 0.05) in the MAS+ and MAS++ and DSM+ and DSM++ groups when compared to the control group. Similarly, a significant increase was noted in hemoglobin when DSM was supplemented when compared to the control one. Moreover, the number of heterophils increased (p < 0.05) in groups of MAS and DSM when compared to the control group. The percentage of phagocytic activity increased significantly by 5.39, 6.90, and 7.18% in MAS++, DSM+, and DSM++, respectively, relative to the control group. On the other hand, the phagocytic number decreased (p < 0.05) by 1.15 and 1.12 conditional units in MAS+ and MAS++ and by 1.03 and 0.83 conditional units in DSM+ and DSM++ when compared to the control group, respectively. Consequently, the inclusion of thermally modified mineral adsorbent shungite and the dried seaweed meal F. vesiculosus with different doses in Brown Nick cross laying hen diets improves the egg weight and egg quality, crude protein, carotenoids and vitamin A in the egg mass, the utilization of lysine and methionine nutrients, hemoglobin content, immunity status, while decreases the incidence of fatty liver occurrence.
Collapse
Affiliation(s)
- Nikolai P. Buryakov
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia (A.S.Z.)
| | - Anastasiya S. Zaikina
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia (A.S.Z.)
| | - Vladimir I. Trukhachev
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia (A.S.Z.)
| | - Maria A. Buryakova
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia (A.S.Z.)
- Department of Physiology, Ethology and Biochemistry of Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Valentina G. Kosolapova
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia (A.S.Z.)
| | - Ilia N. Nikonov
- Department of Animal Hygiene and Poultry Breeding Named after A.K. Danilova, Faculty of Animal Technologies and Agribusiness, Moscow State Academy of Veterinary Medicine and Biotechnology—MVA Named after K.I. Skryabin, 109472 Moscow, Russia;
| | - Ivan K. Medvedev
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia (A.S.Z.)
| | - Mohamed M. Fathala
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia (A.S.Z.)
- Animal Husbandry and Wealth Development Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Dmitrii E. Aleshin
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia (A.S.Z.)
| |
Collapse
|
13
|
Wang Z, Shi Y, Zeng S, Zheng Y, Wang H, Liao H, Song J, Zhang X, Cao J, Li C. Polysaccharides from Holothuria leucospilota Relieve Loperamide-Induced Constipation Symptoms in Mice. Int J Mol Sci 2023; 24:ijms24032553. [PMID: 36768874 PMCID: PMC9916744 DOI: 10.3390/ijms24032553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
A vital bioactive component of marine resources is Holothuria leucospilota polysaccharides (HLP). This study examined whether HLP could regulate intestinal flora to treat loperamide-induced constipation. Constipated mice showed signs of prolonged defecation (up by 60.79 min) and a reduced number of bowel movements and pellet water content (decreased by 12.375 and 11.77%, respectively). The results showed that HLP treatment reduced these symptoms, reversed the changes in related protein expression levels in the colon, and regulated the levels of active peptides associated with the gastrointestinal tract in constipated mice, which significantly improved water-electrolyte metabolism and enhanced gastrointestinal motility. Meanwhile, it was found that intestinal barrier damage was reduced and the inflammatory response was inhibited through histopathology and immunohistochemistry. As a means to further relieve constipation symptoms, treatment with low, medium, and high HLP concentrations increased the total short-chain fatty acid (SCFA) content in the intestine of constipated mice by 62.60 μg/g, 138.91 μg/g, and 126.51 μg/g, respectively. Moreover, an analysis of the intestinal flora's gene for 16S rRNA suggested that the intestinal microbiota was improved through HLP treatment, which is relevant to the motivation for the production of SCFAs. In summary, it was demonstrated that HLP reduced loperamide-induced constipation in mice.
Collapse
Affiliation(s)
- Ziqi Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yali Shi
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shiyu Zeng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanping Zheng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Correspondence: (Y.Z.); (C.L.); Tel./Fax: +86-089-8662-56495 (C.L.)
| | - Huaijie Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Haihui Liao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jie Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinyue Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Cao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (Y.Z.); (C.L.); Tel./Fax: +86-089-8662-56495 (C.L.)
| |
Collapse
|