1
|
Yu M, Song T, Yu J, Cao H, Pan X, Qi Z, Du Y, Liu W, Liu Y. UvVelC is important for conidiation and pathogenicity in the rice false smut pathogen Ustilaginoidea virens. Virulence 2024; 15:2301243. [PMID: 38240294 PMCID: PMC10802205 DOI: 10.1080/21505594.2023.2301243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Rice false smut disease is one of the most significant rice diseases worldwide. Ustilaginoidea virens is the causative agent of this disease. Although several developmental and pathogenic genes have been identified and functionally analyzed, the pathogenic molecular mechanisms of U. virens remain elusive. The velvet family regulatory proteins are involved in fungal development, conidiation, and pathogenicity. In this study, we demonstrated the function of the VelC homolog UvVELC in U. virens. We identified the velvet family protein UvVELC and characterized its functions using a target gene deletion-strategy. Deletion of UvVELC resulted in conidiation failure and pathogenicity. The UvVELC expression levels during infection suggested that this gene might be involved in the early infection process. UvVELC is also important in resistance to abiotic stresses, the utilization efficiency of glucose, stachyose, raffinose, and other sugars, and the expression of transport-related genes. Moreover, UvVELC could physically interact with UvVEA in yeast, and UvVELC/UvVEA double-knockout mutants also failed in conidiation and pathogenicity. These results indicate that UvVELC play a critical role in the conidiation and pathogenicity in U. virens. Functional analysis indicated that UvVELC-mediated conidiation and nutrient acquisition from rice regulates the pathogenicity of U. virens. Understanding the function of the UvVELC homolog could provide a potential molecular target for controlling rice false smut disease.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Insistant of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
2
|
Duan C, Wang S, Yao Y, Pan Y, Liu G. MFS Transporter as the Molecular Switch Unlocking the Production of Cage-Like Acresorbicillinol C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19061-19070. [PMID: 39148224 DOI: 10.1021/acs.jafc.4c05177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Sorbicillinoids are a class of fungal polyketides with diverse structures and distinguished bioactivities. Although remarkable progress has been achieved in their chemistry and biosynthesis, the efflux of sorbicillinoids is poorly understood. Here, we found MFS transporter AcsorT was responsible for the biosynthesis of sorbicillinoids in Acremonium chrysogenum. Combinatorial knockout and subcellular location demonstrated that the plasma membrane-associated AcsorT was responsible for the transportation of sorbicillinol and subsequent formation of oxosorbicillinol and acresorbicillinol C via the berberine bridge enzyme-like oxidase AcsorD in the periplasm. Homology modeling and site-directed mutation revealed that Tyr303 and Arg436 were the key residues of AcsorT, which was further explained by molecular dynamics simulation. Based on our study, it was suggested that AcsorT modulates sorbicillinoid production by coordinating its biosynthesis and export, and a transport model of sorbicillinoids was proposed in A. chrysogenum.
Collapse
Affiliation(s)
- Chengbao Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyuan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Fan Y, Zhao W, Tang X, Yang M, Yang Y, Zhang Z, Cheng B, Zhou E, He Z. Co-infection of Four Novel Mycoviruses from Three Lineages Confers Hypovirulence on Phytopathogenic Fungus Ustilaginoidea virens. RICE (NEW YORK, N.Y.) 2024; 17:44. [PMID: 39014281 PMCID: PMC11252108 DOI: 10.1186/s12284-024-00721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Rice false smut caused by Ustilaginoidea virens has become one of the most important diseases of rice. Mycoviruses are viruses that can infect fungi with the potential to control fungal diseases. However, little is known about the biocontrol role of hypoviruses in U. virens. In this study, we revealed that the hypovirulence-associated U. virens strain Uv325 was co-infected by four novel mycoviruses from three lineages, designated Ustilaginoidea virens RNA virus 16 (UvRV16), Ustilaginoidea virens botourmiavirus virus 8 (UvBV8), Ustilaginoidea virens botourmiavirus virus 9 (UvBV9), and Ustilaginoidea virens narnavirus virus 13 (UvNV13), respectively. The U. virens strain co-infected by four mycoviruses showed slower growth rates, reduced conidial yield, and attenuated pigmentation. We demonstrated that UvRV16 was not only the major factor responsible for the hypovirulent phenotype in U. vriens, but also able to prevent U. virens to accumulate more mycotoxin, thereby weakening the inhibitory effects on rice seed germination and seedling growth. Additionally, we indicated that UvRV16 can disrupt the antiviral response of U. virens by suppressing the transcriptional expression of multiple genes involved in autophagy and RNA silencing. In conclusion, our study provided new insights into the biological control of rice false smut.
Collapse
Affiliation(s)
- Yu Fan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhua Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolin Tang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Mei Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yingqing Yang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Zixuan Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Baoping Cheng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Key Laboratory of Green Prevention and Control On Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong, 510642, China.
| | - Erxun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhenrui He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Wang B, Duan G, Liu L, Long Z, Bai X, Ou M, Wang P, Jiang D, Li D, Sun W. UvHOS3-mediated histone deacetylation is essential for virulence and negatively regulates ustilaginoidin biosynthesis in Ustilaginoidea virens. MOLECULAR PLANT PATHOLOGY 2024; 25:e13429. [PMID: 38353606 PMCID: PMC10866089 DOI: 10.1111/mpp.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Ustilaginoidea virens is the causal agent of rice false smut, which has recently become one of the most important rice diseases worldwide. Ustilaginoidins, a major type of mycotoxins produced in false smut balls, greatly deteriorates grain quality. Histone acetylation and deacetylation are involved in regulating secondary metabolism in fungi. However, little is yet known on the functions of histone deacetylases (HDACs) in virulence and mycotoxin biosynthesis in U. virens. Here, we characterized the functions of the HDAC UvHOS3 in U. virens. The ΔUvhos3 deletion mutant exhibited the phenotypes of retarded growth, increased mycelial branches and reduced conidiation and virulence. The ΔUvhos3 mutants were more sensitive to sorbitol, sodium dodecyl sulphate and oxidative stress/H2 O2 . ΔUvhos3 generated significantly more ustilaginoidins. RNA-Seq and metabolomics analyses also revealed that UvHOS3 is a key negative player in regulating secondary metabolism, especially mycotoxin biosynthesis. Notably, UvHOS3 mediates deacetylation of H3 and H4 at H3K9, H3K18, H3K27 and H4K8 residues. Chromatin immunoprecipitation assays indicated that UvHOS3 regulates mycotoxin biosynthesis, particularly for ustilaginoidin and sorbicillinoid production, by modulating the acetylation level of H3K18. Collectively, this study deepens the understanding of molecular mechanisms of the HDAC UvHOS3 in regulating virulence and mycotoxin biosynthesis in phytopathogenic fungi.
Collapse
Affiliation(s)
- Bo Wang
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
- College of Plant ProtectionSanya Institute of China Agricultural UniversitySanyaChina
| | - Guohua Duan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Ling Liu
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Zhaoyi Long
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Xiaolong Bai
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Mingming Ou
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Peiying Wang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Du Jiang
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionSanya Institute of China Agricultural UniversitySanyaChina
| | - Dayong Li
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Wenxian Sun
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| |
Collapse
|
5
|
Wang S, Wang M, Duan C, Yao Y, Ren J, Liu L, Pan Y, Liu G. A Berberine Bridge Enzyme-like Oxidase Mediates the Cage-like Acresorbicillinol C Biosynthesis. Org Lett 2024; 26:642-646. [PMID: 38214302 DOI: 10.1021/acs.orglett.3c03966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Oxosorbicillinol and cage-like acresorbicillinol C are bioactive sorbicillinoids produced by Acremonium chrysogenum. We found that a berberine bridge enzyme-like oxidase AcsorD was responsible for their biosynthesis by gene deletion and heterologous expression. AcsorD catalyzed oxidation of sorbicillinol to form oxosorbicillinol in in vitro assays, which was successively condensed with sorbicillinol to form acresorbicillinol C spontaneously. Finally, site-directed mutation revealed that Tyr525 was the key residue in the catalysis of the oxidation reaction and unlocking cage-like acresorbicillinol C production.
Collapse
Affiliation(s)
- Shiyuan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Chengbao Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Xue M, Hou X, Gu G, Dong J, Yang Y, Pan X, Zhang X, Xu D, Lai D, Zhou L. Activation of Ustilaginoidin Biosynthesis Gene uvpks1 in Villosiclava virens Albino Strain LN02 Influences Development, Stress Responses, and Inhibition of Rice Seed Germination. J Fungi (Basel) 2023; 10:31. [PMID: 38248941 PMCID: PMC10817433 DOI: 10.3390/jof10010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Villosiclava virens (anamorph: Ustilaginoidea virens) is the pathogen of rice false smut (RFS), which is a destructive rice fungal disease. The albino strain LN02 is a natural white-phenotype mutant of V. virens due to its incapability to produce toxic ustilaginoidins. In this study, three strains including the normal strain P1, albino strain LN02, and complemented strain uvpks1C-1 of the LN02 strain were employed to investigate the activation of the ustilaginoidin biosynthesis gene uvpks1 in the albino strain LN02 to influence sporulation, conidia germination, pigment production, stress responses, and the inhibition of rice seed germination. The activation of the ustilaginoidin biosynthesis gene uvpks1 increased fungal tolerances to NaCl-induced osmotic stress, Congo-red-induced cell wall stress, SDS-induced cell membrane stress, and H2O2-induced oxidative stress. The activation of uvpks1 also increased sporulation, conidia germination, pigment production, and the inhibition of rice seed germination. In addition, the activation of uvpks1 was able to increase the mycelial growth of the V. virens albino strain LN02 at 23 °C and a pH from 5.5 to 7.5. The findings help in understanding the effects of the activation of uvpks1 in albino strain LN02 on development, pigment production, stress responses, and the inhibition of rice seed germination by controlling ustilaginoidin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (X.H.); (G.G.); (J.D.); (Y.Y.); (X.P.); (X.Z.); (D.X.); (D.L.)
| |
Collapse
|
7
|
Xue M, Zhao S, Gu G, Xu D, Zhang X, Hou X, Miao J, Dong H, Hu D, Lai D, Zhou L. A Genome-Wide Comparison of Rice False Smut Fungus Villosiclava virens Albino Strain LN02 Reveals the Genetic Diversity of Secondary Metabolites and the Cause of Albinism. Int J Mol Sci 2023; 24:15196. [PMID: 37894876 PMCID: PMC10607355 DOI: 10.3390/ijms242015196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Rice false smut (RFS) caused by Villosiclava virens (anamorph: Ustilaginoidea virens) has become one of the most destructive fungal diseases to decrease the yield and quality of rice grains. An albino strain LN02 was isolated from the white RFS balls collected in the Liaoning Province of China in 2019. The strain LN02 was considered as a natural albino mutant of V. virens by analyzing its phenotypes, internal transcribed spacer (ITS) conserved sequence, and biosynthesis gene clusters (BGCs) for secondary metabolites. The total assembled genome of strain LN02 was 38.81 Mb, which was comprised of seven nuclear chromosomes and one mitochondrial genome with an N50 value of 6,326,845 bp and 9339 protein-encoding genes. In addition, the genome of strain LN02 encoded 19 gene clusters for biosynthesis of secondary metabolites mainly including polyketides, terpenoids and non-ribosomal peptides (NRPs). Four sorbicillinoid metabolites were isolated from the cultures of strain LN02. It was found that the polyketide synthase (PKS)-encoding gene uspks1 for ustilaginoidin biosynthesis in strain LN02 was inactivated due to the deletion of four bases in the promoter sequence of uvpks1. The normal uvpks1 complementary mutant of strain LN02 could restore the ability to synthesize ustilaginoidins. It demonstrated that deficiency of ustilaginoidin biosynthesis is the cause of albinism for RFS albino strain LN02, and V. virens should be a non-melanin-producing fungus. This study further confirmed strain LN02 as a white phenotype mutant of V. virens. The albino strain LN02 will have a great potential in the development and application of secondary metabolites. The physiological and ecological functions of ustilaginoidins in RFS fungus are needed for further investigation.
Collapse
Affiliation(s)
- Mengyao Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Siji Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Gan Gu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Xuping Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Xuwen Hou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Jiankun Miao
- Institute of Plant Protection, Liaoning Academy of Agricultural Science, Shenyang 110161, China; (J.M.); (H.D.)
| | - Hai Dong
- Institute of Plant Protection, Liaoning Academy of Agricultural Science, Shenyang 110161, China; (J.M.); (H.D.)
| | - Dongwei Hu
- Biotechnology Institute, Zhejiang University, Hangzhou 310058, China;
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| |
Collapse
|
8
|
Zhang X, Hou X, Xu D, Xue M, Zhang J, Wang J, Yang Y, Lai D, Zhou L. Effects of Carbon, Nitrogen, Ambient pH and Light on Mycelial Growth, Sporulation, Sorbicillinoid Biosynthesis and Related Gene Expression in Ustilaginoidea virens. J Fungi (Basel) 2023; 9:jof9040390. [PMID: 37108845 PMCID: PMC10142091 DOI: 10.3390/jof9040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Sorbicillinoids are a class of hexaketide metabolites produced by Ustilaginoidea virens (teleomorph: Villosiclava virens), an important fungal pathogen that causes a devastating rice disease. In this study, we investigated the effects of environmental factors, including carbon and nitrogen sources, ambient pH and light exposure, on mycelial growth, sporulation, as well as the accumulation of sorbicillinoids, and the expression of related genes involved in sorbicillinoid biosynthesis. It was found that the environmental factors had great influences on mycelial growth and sporulation of U. virens. Fructose and glucose, complex nitrogen sources, acidic conditions and light exposure were favorable for sorbicillinoid production. The relative transcript levels of sorbicillinoid biosynthesis genes were up-regulated when U. virens was separately treated with those environmental factors that favored sorbicillinoid production, indicating that sorbicillinoid biosynthesis was mainly regulated at the transcriptional level by different environmental factors. Two pathway-specific transcription factor genes, UvSorR1 and UvSorR2, were found to participate in the regulation of sorbicillinoid biosynthesis. These results will provide useful information to better understand the regulation mechanisms of sorbicillinoid biosynthesis, and be conducive to develop effective means for controlling sorbicillinoid production in U. virens.
Collapse
Affiliation(s)
- Xuping Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuwen Hou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mengyao Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiayin Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiacheng Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yonglin Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Guo XY, Li HT, Shao YT, Li CY, Huang WY, Li W. Bioactive sorbicillinoids from a rhizospheric soil-derived Paecilomyces sp. KMU21009. Fitoterapia 2023; 166:105443. [PMID: 36736743 DOI: 10.1016/j.fitote.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
A new hybrid sorbicillinoid named paeciureallin (1) and a new monomeric sorbicillinoid named paecillyketide (2), along with six known analogues (3-8), were isolated from the rhizospheric soil-derived fungus Paecilomyces sp. KMU21009 associated with Delphinium yunnanense. Their structures were elucidated by extensive spectroscopic analysis and comparison with literature values. Paeciureallin (1) is the first example of hybrid sorbicillinoids possessing a rare sorbicillinoid urea unit and containing a β-D-ribofuranose functionality. In pharmacological studies, compounds 1 and 2 were evaluated for in vitro anti-inflammatory and cytotoxic activities. Paeciureallin (1) exhibited moderate cytotoxicity against SW480 and A549 cell lines, and the IC50 values were 32.0 ± 0.1 and 34.4 ± 2.0 μM, respectively.
Collapse
Affiliation(s)
- Xing-Yi Guo
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Hong-Tao Li
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Ya-Ting Shao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Chang-Yan Li
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Wen-Yu Huang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Wei Li
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|