1
|
Swain N, Sahoo RK, Jeughale KP, Sarkar S, Selvaraj S, Parameswaran C, Katara J, Bose LK, Samantaray S. Rice homolog of Arabidopsis Xylem NAC domain 1 (OsXND1), a NAC transcription factor regulates drought stress responsive root system architecture in indica rice. Mol Genet Genomics 2024; 299:94. [PMID: 39369362 DOI: 10.1007/s00438-024-02178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/25/2024] [Indexed: 10/07/2024]
Abstract
Rice yield is greatly constrained by drought stress. In Arabidopsis, XYLEM NAC DOMAIN 1 (XND1) gene regulates the xylem formation, efficiency of water transport, and the delicate equilibrium between drought tolerance and resistance to pathogens. However, diversity and the role of rice homologs of OsXND1 is not reported so far. This study hypothesized that the rice homolog of OsXND1 also regulates drought stress tolerance through modulation of root architecture. Initially, phylogenetic analysis identified two OsXND1 homologs (Os02g0555300 and Os04g0437000) in rice. Further, 14 haplotypes were identified in the OsXND1 of which Hap1 and Hap3 were major haplotypes. The association analysis of OsXND1 with 16 different traits, including 10 root traits, showed three SNPs (Chr02:20972728-Promoter variant; Chr02:20972791-5' UTR variant, and Chr02:20973745-3' UTR variant) were significantly associated with root area, root surface area, total root length, and convex hull area only under drought stress in indica rice. Besides, the superior haplotype of OsXND1 increased the root area, root surface area, total root length, and convex hull area by 46%, 40%, 38%, and 42%, respectively, under drought stress conditions. Therefore, the identified superior haplotype of OsXND1 can be utilized in haplotype breeding programs for the improvement of drought tolerance in rice.
Collapse
Affiliation(s)
- Nibedita Swain
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
- Department of Botany and Biotechnology, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Raj Kishore Sahoo
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
- Department of Botany and Biotechnology, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Kishor P Jeughale
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Suman Sarkar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Sabarinathan Selvaraj
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - C Parameswaran
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India.
| | - Jawaharlal Katara
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Lotan K Bose
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Sanghamitra Samantaray
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India.
| |
Collapse
|
2
|
Shah IH, Manzoor MA, Jinhui W, Li X, Hameed MK, Rehaman A, Li P, Zhang Y, Niu Q, Chang L. Comprehensive review: Effects of climate change and greenhouse gases emission relevance to environmental stress on horticultural crops and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119978. [PMID: 38169258 DOI: 10.1016/j.jenvman.2023.119978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Global climate change exerts a significant impact on sustainable horticultural crop production and quality. Rising Global temperatures have compelled the agricultural community to adjust planting and harvesting schedules, often necessitating earlier crop cultivation. Notably, climate change introduces a suite of ominous factors, such as greenhouse gas emissions (CGHs), including elevated temperature, increased carbon dioxide (CO2) concentrations, nitrous oxide (N2O) and methane (CH4) ozone depletion (O3), and deforestation, all of which intensify environmental stresses on crops. Consequently, climate change stands poised to adversely affect crop yields and livestock production. Therefore, the primary objective of the review article is to furnish a comprehensive overview of the multifaceted factors influencing horticulture production, encompassing fruits, vegetables, and plantation crops with a particular emphasis on greenhouse gas emissions and environmental stressors such as high temperature, drought, salinity, and emission of CO2. Additionally, this review will explore the implementation of novel horticultural crop varieties and greenhouse technology that can contribute to mitigating the adverse impact of climate change on agricultural crops.
Collapse
Affiliation(s)
- Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wu Jinhui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xuyang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Asad Rehaman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pengli Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
3
|
Opoku VA, Adu MO, Asare PA, Asante J, Hygienus G, Andersen MN. Rapid and low-cost screening for single and combined effects of drought and heat stress on the morpho-physiological traits of African eggplant (Solanum aethiopicum) germplasm. PLoS One 2024; 19:e0295512. [PMID: 38289974 PMCID: PMC10826938 DOI: 10.1371/journal.pone.0295512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/24/2023] [Indexed: 02/01/2024] Open
Abstract
Drought and heat are two stresses that often occur together and may pose significant risks to crops in future climates. However, the combined effects of these two stressors have received less attention than single-stressor investigations. This study used a rapid and straightforward phenotyping method to quantify the variation in 128 African eggplant genotype responses to drought, heat, and the combined effects of heat and drought at the seedling stage. The study found that the morphophysiological traits varied significantly among the 128 eggplants, highlighting variation in response to abiotic stresses. Broad-sense heritability was high (> 0.60) for chlorophyll content, plant biomass and performance index, electrolyte leakage, and total leaf area. Positive and significant relationships existed between biomass and photosynthetic parameters, but a negative association existed between electrolyte leakage and morpho-physiological traits. The plants underwent more significant stress when drought and heat stress were imposed concurrently than under single stresses, with the impact of drought on the plants being more detrimental than heat. There were antagonistic effects on the morphophysiology of the eggplants when heat and drought stress were applied together. Resilient genotypes such as RV100503, RV100501, JAMBA, LOC3, RV100164, RV100169, LOC 3, RV100483, GH5155, RV100430, GH1087, GH1087*, RV100388, RV100387, RV100391 maintained high relative water content, low electrolyte leakage, high Fv/Fm ratio and performance index, and increased biomass production under abiotic stress conditions. The antagonistic interactions between heat and drought observed here may be retained or enhanced during several stress combinations typical of plants' environments and must be factored into efforts to develop climate change-resilient crops. This paper demonstrates improvised climate chambers for high throughput, reliable, rapid, and cost-effective screening for heat and drought and combined stress tolerance in plants.
Collapse
Affiliation(s)
- Vincent A. Opoku
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Michael O. Adu
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Paul A. Asare
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Justice Asante
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Godswill Hygienus
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mathias N. Andersen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|