1
|
Velloso LA, Donato J. Growth Hormone, Hypothalamic Inflammation, and Aging. J Obes Metab Syndr 2024; 33:302-313. [PMID: 39639711 PMCID: PMC11704225 DOI: 10.7570/jomes24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
While inflammation is a crucial response in injury repair and tissue regeneration, chronic inflammation is a prevalent feature in various chronic, non-communicable diseases such as obesity, diabetes, and cancer and in cardiovascular and neurodegenerative diseases. Long-term inflammation considerably affects disease prevalence, quality of life, and longevity. Our research indicates that the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis is a pivotal regulator of inflammation in some tissues, including the hypothalamus, which is a key player in systemic metabolism regulation. Moreover, the GH/IGF-1 axis is strongly linked to longevity, as GH- or GH receptor-deficient mice live approximately twice as long as wild-type animals and exhibit protection against aging-induced inflammation. Conversely, GH excess leads to increased neuroinflammation and reduced longevity. Our review studies the associations between the GH/IGF-1 axis, inflammation, and aging, with a particular focus on evidence suggesting that GH receptor signaling directly induces hypothalamic inflammation. This finding underscores the significant impact of changes in the GH axis on metabolism and on the predisposition to chronic, non-communicable diseases.
Collapse
Affiliation(s)
- Licio A. Velloso
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Campinas, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
White TA, Miller SL, Sutherland AE, Allison BJ, Camm EJ. Perinatal compromise affects development, form, and function of the hippocampus part two; preclinical studies. Pediatr Res 2024; 95:1709-1719. [PMID: 38519795 PMCID: PMC11245392 DOI: 10.1038/s41390-024-03144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/25/2024]
Abstract
The hippocampus is a vital brain structure deep in the medial temporal lobe that mediates a range of functions encompassing emotional regulation, learning, memory, and cognition. Hippocampal development is exquisitely sensitive to perturbations and adverse conditions during pregnancy and at birth, including preterm birth, fetal growth restriction (FGR), acute hypoxic-ischaemic encephalopathy (HIE), and intrauterine inflammation. Disruptions to hippocampal development due to these conditions can have long-lasting functional impacts. Here, we discuss a range of preclinical models of prematurity and FGR and conditions that induce hypoxia and inflammation, which have been critical in elucidating the underlying mechanisms and cellular and subcellular structures implicated in hippocampal dysfunction. Finally, we discuss potential therapeutic targets to reduce the burden of these perinatal insults on the developing hippocampus. IMPACT: The review explores the preclinical literature examining the association between pregnancy and birth complications, and hippocampal form and function. The developmental processes and cellular mechanisms that are disrupted within the hippocampus following perinatal compromise are described, and potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Tegan A White
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Donato J, Kopchick JJ. New findings on brain actions of growth hormone and potential clinical implications. Rev Endocr Metab Disord 2024; 25:541-553. [PMID: 38060062 PMCID: PMC11156798 DOI: 10.1007/s11154-023-09861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Growth hormone (GH) is secreted by somatotropic cells of the anterior pituitary gland. The classical effects of GH comprise the stimulation of cell proliferation, tissue and body growth, lipolysis, and insulin resistance. The GH receptor (GHR) is expressed in numerous brain regions. Notably, a growing body of evidence indicates that GH-induced GHR signaling in specific neuronal populations regulates multiple physiological functions, including energy balance, glucose homeostasis, stress response, behavior, and several neurological/cognitive aspects. The importance of central GHR signaling is particularly evident when the organism is under metabolic stress, such as pregnancy, chronic food deprivation, hypoglycemia, and prolonged exercise. These particular situations are associated with elevated GH secretion. Thus, central GH action represents an internal signal that coordinates metabolic, neurological, neuroendocrine, and behavioral adaptations that are evolutionarily advantageous to increase the chances of survival. This review summarizes and discusses recent findings indicating that the brain is an important target of GH, and GHR signaling in different neuronal populations regulates essential physiological functions.
Collapse
Affiliation(s)
- Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Lineu Prestes, 1524, Sao Paulo, SP, 05508-000, Brazil.
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
4
|
Menezes F, Wasinski F, de Souza GO, Nunes AP, Bernardes ES, dos Santos SN, da Silva FFA, Peroni CN, Oliveira JE, Kopchick JJ, Brown RSE, Fernandez G, De Francesco PN, Perelló M, Soares CRJ, Donato J. The Pattern of GH Action in the Mouse Brain. Endocrinology 2024; 165:bqae057. [PMID: 38728240 PMCID: PMC11137758 DOI: 10.1210/endocr/bqae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
GH acts in numerous organs expressing the GH receptor (GHR), including the brain. However, the mechanisms behind the brain's permeability to GH and how this hormone accesses different brain regions remain unclear. It is well-known that an acute GH administration induces phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the mouse brain. Thus, the pattern of pSTAT5 immunoreactive cells was analyzed at different time points after IP or intracerebroventricular GH injections. After a systemic GH injection, the first cells expressing pSTAT5 were those near circumventricular organs, such as arcuate nucleus neurons adjacent to the median eminence. Both systemic and central GH injections induced a medial-to-lateral pattern of pSTAT5 immunoreactivity over time because GH-responsive cells were initially observed in periventricular areas and were progressively detected in lateral brain structures. Very few choroid plexus cells exhibited GH-induced pSTAT5. Additionally, Ghr mRNA was poorly expressed in the mouse choroid plexus. In contrast, some tanycytes lining the floor of the third ventricle expressed Ghr mRNA and exhibited GH-induced pSTAT5. The transport of radiolabeled GH into the hypothalamus did not differ between wild-type and dwarf Ghr knockout mice, indicating that GH transport into the mouse brain is GHR independent. Also, single-photon emission computed tomography confirmed that radiolabeled GH rapidly reaches the ventral part of the tuberal hypothalamus. In conclusion, our study provides novel and valuable information about the pattern and mechanisms behind GH transport into the mouse brain.
Collapse
Affiliation(s)
- Filipe Menezes
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Frederick Wasinski
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
- Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo 04039-032, Brazil
| | - Gabriel O de Souza
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Amanda P Nunes
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Emerson S Bernardes
- Radiopharmacy Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Sofia N dos Santos
- Radiopharmacy Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Fábio F A da Silva
- Radiopharmacy Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Cibele N Peroni
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - João E Oliveira
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Rosemary S E Brown
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA 1900, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA 1900, Argentina
| | - Mario Perelló
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA 1900, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala 75312, Sweden
| | - Carlos R J Soares
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
5
|
Ávila-Mendoza J, Delgado-Rueda K, Urban-Sosa VA, Carranza M, Luna M, Martínez-Moreno CG, Arámburo C. KLF13 Regulates the Activity of the GH-Induced JAK/STAT Signaling by Targeting Genes Involved in the Pathway. Int J Mol Sci 2023; 24:11187. [PMID: 37446365 DOI: 10.3390/ijms241311187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The Krüppel-like factor 13 (KLF13) has emerged as an important transcription factor involved in essential processes of the central nervous system (CNS). It predominantly functions as a transcriptional repressor, impacting the activity of several signaling pathways with essential roles in the CNS, including the JAK/STAT pathway, which is the canonical mediator of growth hormone (GH) signaling. It is now recognized that GH has important actions as a neurotrophic factor. Therefore, we analyzed the effects of KLF13 on the activity of the JAK/STAT signaling pathway in the hippocampus-derived cell line HT22. Results showed that KLF13 directly regulates the expression of several genes involved in the JAK-STAT pathway, including Jak1, Jak2, Jak3, and Socs1, by associating with their proximal gene promoters. In addition, it was found that in KLF13-deficient HT22 neurons, the expression of Jak1, Stat3, Socs1, Socs3, and Igf1 was dysregulated, exhibiting mRNA levels that went up to 7-fold higher than the control cell line. KLF13 displayed a differential effect on the GH-induced JAK/STAT pathway activity, decreasing the STAT3 branch while enhancing the STAT5 branch. In KLF13-deficient HT22 cells, the activity of the STAT3 branch was enhanced, mediating the GH-dependent augmented expression of the JAK/STAT output genes Socs1, Socs3, Igf1, and Bdnf. Furthermore, GH treatment increased both the nuclear content of KLF13 and Klf13 mRNA levels, suggesting that KLF13 could be part of the mechanisms that maintain the homeostatic state of this pathway. These findings support the notion that KLF13 is a regulator of JAK/STAT activity.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Karen Delgado-Rueda
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Valeria A Urban-Sosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| |
Collapse
|
6
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|