1
|
Seida I, Al Shawaf M, Mahroum N. Fecal microbiota transplantation in autoimmune diseases - An extensive paper on a pathogenetic therapy. Autoimmun Rev 2024; 23:103541. [PMID: 38593970 DOI: 10.1016/j.autrev.2024.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The role of infections in the pathogenesis of autoimmune diseases has long been recognized and reported. In addition to infectious agents, the internal composition of the "friendly" living bacteria, (microbiome) and its correlation to immune balance and dysregulation have drawn the attention of researchers for decades. Nevertheless, only recently, scientific papers regarding the potential role of transferring microbiome from healthy donor subjects to patients with autoimmune diseases has been proposed. Fecal microbiota transplantation or FMT, carries the logic of transferring microorganisms responsible for immune balance from healthy donors to individuals with immune dysregulation or more accurately for our paper, autoimmune diseases. Viewing the microbiome as a pathogenetic player allows us to consider FMT as a pathogenetic-based treatment. Promising results alongside improved outcomes have been demonstrated in patients with different autoimmune diseases following FMT. Therefore, in our current extensive review, we aimed to highlight the implication of FMT in various autoimmune diseases, such as inflammatory bowel disease, autoimmune thyroid and liver diseases, systemic lupus erythematosus, and type 1 diabetes mellitus, among others. Presenting all the aspects of FMT in more than 12 autoimmune diseases in one paper, to the best of our knowledge, is the first time presented in medical literature. Viewing FMT as such could contribute to better understanding and newer application of the model in the therapy of autoimmune diseases, indeed.
Collapse
Affiliation(s)
- Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Maisam Al Shawaf
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
2
|
Speckmann B, Ehring E, Hu J, Rodriguez Mateos A. Exploring substrate-microbe interactions: a metabiotic approach toward developing targeted synbiotic compositions. Gut Microbes 2024; 16:2305716. [PMID: 38300741 PMCID: PMC10841028 DOI: 10.1080/19490976.2024.2305716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Gut microbiota is an important modulator of human health and contributes to high inter-individual variation in response to food and pharmaceutical ingredients. The clinical outcomes of interventions with prebiotics, probiotics, and synbiotics have been mixed and often unpredictable, arguing for novel approaches for developing microbiome-targeted therapeutics. Here, we review how the gut microbiota determines the fate of and individual responses to dietary and xenobiotic compounds via its immense metabolic potential. We highlight that microbial metabolites play a crucial role as targetable mediators in the microbiota-host health relationship. With this in mind, we expand the concept of synbiotics beyond prebiotics' role in facilitating growth and engraftment of probiotics, by focusing on microbial metabolism as a vital mode of action thereof. Consequently, we discuss synbiotic compositions that enable the guided metabolism of dietary or co-formulated ingredients by specific microbes leading to target molecules with beneficial functions. A workflow to develop novel synbiotics is presented, including the selection of promising target metabolites (e.g. equol, urolithin A, spermidine, indole-3 derivatives), identification of suitable substrates and producer strains applying bioinformatic tools, gut models, and eventually human trials.In conclusion, we propose that discovering and enabling specific substrate-microbe interactions is a valuable strategy to rationally design synbiotics that could establish a new category of hybrid nutra-/pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Ana Rodriguez Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
3
|
Ramedani N, Seidita A, Asri N, Azimirad M, Yadegar A, Jahani-Sherafat S, Sharifan A, Mansueto P, Carroccio A, Rostami-Nejad M. The Gliadin Hydrolysis Capacity of B. longum, L. acidophilus, and L. plantarum and Their Protective Effects on Caco-2 Cells against Gliadin-Induced Inflammatory Responses. Nutrients 2023; 15:2769. [PMID: 37375673 DOI: 10.3390/nu15122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Non-celiac wheat sensitivity (NCWS) is a poorly understood gluten-related disorder (GRD) and its prominent symptoms can be ameliorated by gluten avoidance. This study aimed to determine the effectiveness of a probiotic mixture in hydrolyzing gliadin peptides (toxic components of gluten) and suppressing gliadin-induced inflammatory responses in Caco-2 cells. METHODS Wheat dough was fermented with a probiotic mix for 0, 2, 4, and 6 h. The effect of the probiotic mix on gliadin degradation was monitored by SDS-PAGE. The expression levels of IL-6, IL-17A, INF-γ, IL-10, and TGF-β were evaluated using ELISA and qRT-PCR methods. RESULTS According to our findings, fermenting wheat dough with a mix of B. longum, L. acidophilus, and L. plantarum for 6 h was effective in gliadin degradation. This process also reduced levels of IL-6 (p = 0.004), IL-17A (p = 0.004), and IFN-γ (p = 0.01) mRNA, as well as decreased IL-6 (p = 0.006) and IFN-γ (p = 0.0009) protein secretion. 4 h fermentation led to a significant decrease in IL-17A (p = 0.001) and IFN-γ (p = 0.003) mRNA, as well as reduced levels of IL-6 (p = 0.002) and IFN-γ (p < 0.0001) protein secretion. This process was also observed to increase the expression levels of IL-10 (p < 0.0001) and TGF-β (p < 0.0001) mRNA. CONCLUSIONS 4 h fermentation of wheat flour with the proposed probiotic mix might be a good strategy to develop an affordable gluten-free wheat dough for NCWS and probably other GRD patients.
Collapse
Affiliation(s)
- Najmeh Ramedani
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran 9311634719, Iran
| | - Aurelio Seidita
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416634793, Iran
| | - Anousheh Sharifan
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran 9311634719, Iran
| | - Pasquale Mansueto
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Antonio Carroccio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| |
Collapse
|
4
|
Furone F, Bellomo C, Carpinelli M, Nicoletti M, Hewa-Munasinghege FN, Mordaa M, Mandile R, Barone MV, Nanayakkara M. The protective role of Lactobacillus rhamnosus GG postbiotic on the alteration of autophagy and inflammation pathways induced by gliadin in intestinal models. Front Med (Lausanne) 2023; 10:1085578. [PMID: 37215707 PMCID: PMC10192745 DOI: 10.3389/fmed.2023.1085578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/21/2023] [Indexed: 05/24/2023] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy caused by an abnormal immune response to gliadin peptides in genetically predisposed individuals. For people with CD, the only available therapy thus far is the lifelong necessity for a gluten-free diet (GFD). Innovative therapies include probiotics and postbiotics as dietary supplements, both of which may benefit the host. Therefore, the present study aimed to investigate the possible beneficial effects of the postbiotic Lactobacillus rhamnosus GG (LGG) in preventing the effects induced by indigested gliadin peptides on the intestinal epithelium. In this study, these effects on the mTOR pathway, autophagic function, and inflammation have been evaluated. Furthermore, in this study, we stimulated the Caco-2 cells with the undigested gliadin peptide (P31-43) and with the crude gliadin peptic-tryptic peptides (PTG) and pretreated the samples with LGG postbiotics (ATCC 53103) (1 × 108). In this study, the effects induced by gliadin before and after pretreatment have also been investigated. The phosphorylation levels of mTOR, p70S6K, and p4EBP-1 were increased after treatment with PTG and P31-43, indicating that the intestinal epithelial cells responded to the gliadin peptides by activating the mTOR pathway. Moreover, in this study, an increase in the phosphorylation of NF-κβ was observed. Pretreatment with LGG postbiotic prevented both the activation of the mTOR pathway and the NF-κβ phosphorylation. In addition, P31-43 reduced LC3II staining, and the postbiotic treatment was able to prevent this reduction. Subsequently, to evaluate the inflammation in a more complex intestinal model, the intestinal organoids derived from celiac disease patient biopsies (GCD-CD) and controls (CTR) were cultured. Stimulation with peptide 31-43 in the CD intestinal organoids induced NF-κβ activation, and pretreatment with LGG postbiotic could prevent it. These data showed that the LGG postbiotic can prevent the P31-43-mediated increase in inflammation in both Caco-2 cells and in intestinal organoids derived from CD patients.
Collapse
Affiliation(s)
- Francesca Furone
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| | - Claudia Bellomo
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| | - Martina Carpinelli
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| | - Martina Nicoletti
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| | | | - Majed Mordaa
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| | - Roberta Mandile
- Department of Translational Medical Sciences, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Naples, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Bozomitu L, Miron I, Adam Raileanu A, Lupu A, Paduraru G, Marcu FM, Buga AML, Rusu DC, Dragan F, Lupu VV. The Gut Microbiome and Its Implication in the Mucosal Digestive Disorders. Biomedicines 2022; 10:biomedicines10123117. [PMID: 36551874 PMCID: PMC9775516 DOI: 10.3390/biomedicines10123117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
The gastrointestinal (GI) tract is one of the most studied compartments of the human body as it hosts the largest microbial community including trillions of germs. The relationship between the human and its associated flora is complex, as the microbiome plays an important role in nutrition, metabolism and immune function. With a dynamic composition, influenced by many intrinsic and extrinsic factors, there is an equilibrium maintained in the composition of GI microbiota, translated as "eubiosis". Any disruption of the microbiota leads to the development of different local and systemic diseases. This article reviews the human GI microbiome's composition and function in healthy individuals as well as its involvement in the pathogenesis of different digestive disorders. It also highlights the possibility to consider flora manipulation a therapeutic option when treating GI diseases.
Collapse
Affiliation(s)
- Laura Bozomitu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ingrith Miron
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Adam Raileanu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.A.R.); (A.L.)
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.A.R.); (A.L.)
| | - Gabriela Paduraru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Florin Mihai Marcu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ana Maria Laura Buga
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Carmen Rusu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|