1
|
Subedi M, Bagwell JW, Lopez B, Baik BK, Babar MA, Mergoum M. A Genome-Wide Association Study Approach to Identify Novel Major-Effect Quantitative Trait Loci for End-Use Quality Traits in Soft Red Winter Wheat. Genes (Basel) 2024; 15:1177. [PMID: 39336768 PMCID: PMC11431581 DOI: 10.3390/genes15091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Wheat is used for making many food products due to its diverse quality profile among different wheat classes. Since laboratory analysis of these end-use quality traits is costly and time-consuming, genetic dissection of the traits is preferential. This study used a genome-wide association study (GWAS) of ten end-use quality traits, including kernel protein, flour protein, flour yield, softness equivalence, solvent's retention capacity, cookie diameter, and top-grain, in soft red winter wheat (SRWW) adapted to US southeast. The GWAS included 266 SRWW genotypes that were evaluated in two locations over two years (2020-2022). A total of 27,466 single nucleotide markers were used, and a total of 80 significant marker-trait associations were identified. There were 13 major-effect quantitative trait loci (QTLs) explaining >10% phenotypic variance, out of which, 12 were considered to be novel. Five of the major-effect QTLs were found to be stably expressed across multiple datasets, and four showed associations with multiple traits. Candidate genes were identified for eight of the major-effect QTLs, including genes associated with starch biosynthesis and nutritional homeostasis in plants. These findings increase genetic comprehension of these end-use quality traits and could potentially be used for improving the quality of SRWW.
Collapse
Affiliation(s)
- Madhav Subedi
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - John White Bagwell
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27606, USA
| | - Benjamin Lopez
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA 30223, USA
| | - Byung-Kee Baik
- Corn, Soybean, and Wheat Quality Research, United States Department of Agriculture, Agricultural Research Service, Wooster, OH 44691, USA
| | - Md. Ali Babar
- Department of Agronomy, University of Florida, Gainesville, FL 32610, USA;
| | - Mohamed Mergoum
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA 30223, USA
| |
Collapse
|
2
|
Ahmed MIY, Kamal NM, Gorafi YSA, Abdalla MGA, Tahir ISA, Tsujimoto H. Heat Stress-Tolerant Quantitative Trait Loci Identified Using Backcrossed Recombinant Inbred Lines Derived from Intra-Specifically Diverse Aegilops tauschii Accessions. PLANTS (BASEL, SWITZERLAND) 2024; 13:347. [PMID: 38337879 PMCID: PMC10856904 DOI: 10.3390/plants13030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
In the face of climate change, bringing more useful alleles and genes from wild relatives of wheat is crucial to develop climate-resilient varieties. We used two populations of backcrossed recombinant inbred lines (BIL1 and BIL2), developed by crossing and backcrossing two intra-specifically diverse Aegilops tauschii accessions from lineage 1 and lineage 2, respectively, with the common wheat cultivar 'Norin 61'. This study aimed to identify quantitative trait loci (QTLs) associated with heat stress (HS) tolerance. The two BILs were evaluated under heat stress environments in Sudan for phenology, plant height (PH), grain yield (GY), biomass (BIO), harvest index (HI), and thousand-kernel weight (TKW). Grain yield was significantly correlated with BIO and TKW under HS; therefore, the stress tolerance index (STI) was calculated for these traits as well as for GY. A total of 16 heat-tolerant lines were identified based on GY and STI-GY. The QTL analysis performed using inclusive composite interval mapping identified a total of 40 QTLs in BIL1 and 153 QTLs in BIL2 across all environments. We detected 39 QTLs associated with GY-STI, BIO-STI, and TKW-STI in both populations (14 in BIL1 and 25 in BIL2). The QTLs associated with STI were detected on chromosomes 1A, 3A, 5A, 2B, 4B, and all the D-subgenomes. We found that QTLs were detected only under HS for GY on chromosome 5A, TKW on 3B and 5B, PH on 3B and 4B, and grain filling duration on 2B. The higher number of QTLs identified in BIL2 for heat stress tolerance suggests the importance of assessing the effects of intraspecific variation of Ae. tauschii in wheat breeding as it could modulate the heat stress responses/adaptation. Our study provides useful genetic resources for uncovering heat-tolerant QTLs for wheat improvement for heat stress environments.
Collapse
Affiliation(s)
- Monir Idres Yahya Ahmed
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8550, Japan;
| | - Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; (N.M.K.); (I.S.A.T.)
- Agricultural Research Corporation (ARC), Wad-Medani P.O. Box 126, Sudan; (Y.S.A.G.); (M.G.A.A.)
| | - Yasir Serag Alnor Gorafi
- Agricultural Research Corporation (ARC), Wad-Medani P.O. Box 126, Sudan; (Y.S.A.G.); (M.G.A.A.)
- International Platform for Dryland Research and Education, Tottori University, Tottori 680-0001, Japan
| | | | - Izzat Sidahmed Ali Tahir
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; (N.M.K.); (I.S.A.T.)
- Agricultural Research Corporation (ARC), Wad-Medani P.O. Box 126, Sudan; (Y.S.A.G.); (M.G.A.A.)
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; (N.M.K.); (I.S.A.T.)
| |
Collapse
|
3
|
Ahmed MIY, Gorafi YSA, Kamal NM, Balla MY, Tahir ISA, Zheng L, Kawakami N, Tsujimoto H. Mining Aegilops tauschii genetic diversity in the background of bread wheat revealed a novel QTL for seed dormancy. FRONTIERS IN PLANT SCIENCE 2023; 14:1270925. [PMID: 38107013 PMCID: PMC10723804 DOI: 10.3389/fpls.2023.1270925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Due to the low genetic diversity in the current wheat germplasm, gene mining from wild relatives is essential to develop new wheat cultivars that are more resilient to the changing climate. Aegilops tauschii, the D-genome donor of bread wheat, is a great gene source for wheat breeding; however, identifying suitable genes from Ae. tauschii is challenging due to the different morphology and the wide intra-specific variation within the species. In this study, we developed a platform for the systematic evaluation of Ae. tauschii traits in the background of the hexaploid wheat cultivar 'Norin 61' and thus for the identification of QTLs and genes. To validate our platform, we analyzed the seed dormancy trait that confers resistance to preharvest sprouting. We used a multiple synthetic derivative (MSD) population containing a genetic diversity of 43 Ae. tauschii accessions representing the full range of the species. Our results showed that only nine accessions in the population provided seed dormancy, and KU-2039 from Afghanistan had the highest level of seed dormancy. Therefore, 166 backcross inbred lines (BILs) were developed by crossing the synthetic wheat derived from KU-2039 with 'Norin 61' as the recurrent parent. The QTL mapping revealed one novel QTL, Qsd.alrc.5D, associated with dormancy explaining 41.7% of the phenotypic variation and other five unstable QTLs, two of which have already been reported. The Qsd.alrc.5D, identified for the first time within the natural variation of wheat, would be a valuable contribution to breeding after appropriate validation. The proposed platform that used the MSD population derived from the diverse Ae. tauschii gene pool and recombinant inbred lines proved to be a valuable platform for mining new and important QTLs or alleles, such as the novel seed dormancy QTL identified here. Likewise, such a platform harboring genetic diversity from wheat wild relatives could be a useful source for mining agronomically important traits, especially in the era of climate change and the narrow genetic diversity within the current wheat germplasm.
Collapse
Affiliation(s)
| | - Yasir Serag Alnor Gorafi
- International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
| | - Nasrein Mohamed Kamal
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Mohammed Yousif Balla
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Izzat Sidahmed Ali Tahir
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | | |
Collapse
|
4
|
Pourmohammadi K, Abedi E, Hashemi SMB. Gliadin and glutenin genomes and their effects on the technological aspect of wheat-based products. Curr Res Food Sci 2023; 7:100622. [PMID: 38021258 PMCID: PMC10643115 DOI: 10.1016/j.crfs.2023.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Wheat is the most important crops worldwide, providing about one-fifth of the daily protein and calories for human consumption. The quality of cereal-based products is principally governed by the genetic basis of gluten (glutenin and gliadin proteins), which exists in a wide range of variable alleles and is controlled by clusters of genes. There are certain limitations associated with gluten characteristics, which can be genetically manipulated. The present review aimed to investigate the correlation between the genetic characteristics of gluten protein components and wheat-based product's quality. According to various references, Glu-B1d (6 + 8), Glu-B1h (14 + 15) and Glu-B1b (7 + 8) are related to higher gluten strength and pasta quality, while, subunits Dx2 + Dy12 and Dx5 + Dy10, are usually present at the Glu-D1 locus in bread wheat, resulted in lower cooked firmness in pasta. Moreover, introducing Gli-D1/Glu-D3 and Glu-D1 loci into durum wheat genomes, causing to provide the maximum values of gluten index in pasta products. 1Dx5 + 1Dy10 alleles determine the level of increase in dough's consistency, elasticity, viscosity, and extensibility quality of baking and appropriate bread loaf volume, while 1Dx2 + 1Dy12 as the alleles associated with poor baking quality, being more suitable for soft wheat/pastry end uses. Bx7, Bx7OE, 1Bx17 + 1By18, 1Bx13 + 1By16, Bx7 + By9 and 1Bx7 + 1By8 at Glu-B1alleles and 1Ax2* found on Glu-A1, augmented dough strength and has positive effects on consistency, extensibility, viscosity, and elasticity of bread dough. Breeding programs by genome editing have made gluten a promoting component for improving cereal-based products.
Collapse
Affiliation(s)
- Kiana Pourmohammadi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | - Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
5
|
Leonova IN, Kiseleva AA, Berezhnaya AA, Orlovskaya OA, Salina EA. Novel Genetic Loci from Triticum timopheevii Associated with Gluten Content Revealed by GWAS in Wheat Breeding Lines. Int J Mol Sci 2023; 24:13304. [PMID: 37686111 PMCID: PMC10487702 DOI: 10.3390/ijms241713304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The content and quality of gluten in wheat grain is a distinctive characteristic that determines the final properties of wheat flour. In this study, a genome-wide association study (GWAS) was performed on a wheat panel consisting of bread wheat varieties and the introgression lines (ILs) obtained via hybridization with tetraploid wheat relatives. A total of 17 stable quantitative trait nucleotides (QTNs) located on chromosomes 1D, 2A, 2B, 3D, 5A, 6A, 7B, and 7D that explained up to 21% of the phenotypic variation were identified. Among them, the QTLs on chromosomes 2A and 7B were found to contain three and six linked SNP markers, respectively. Comparative analysis of wheat genotypes according to the composition of haplotypes for the three closely linked SNPs of chromosome 2A indicated that haplotype TT/AA/GG was characteristic of ten ILs containing introgressions from T. timopheevii. The gluten content in the plants with TT/AA/GG haplotype was significantly higher than in the varieties with haplotype GG/GG/AA. Having compared the newly obtained data with the previously reported quantitative trait loci (QTLs) we inferred that the locus on chromosome 2A inherited from T. timopheevii is potentially novel. The introgression lines containing the new locus can be used as sources of genetic factors to improve the quality traits of bread wheat.
Collapse
Affiliation(s)
- Irina N. Leonova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (A.A.K.); (A.A.B.); (E.A.S.)
| | - Antonina A. Kiseleva
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (A.A.K.); (A.A.B.); (E.A.S.)
- Kurchatov Genomics Center IC&G SB RAS, Novosibirsk 630090, Russia
| | - Alina A. Berezhnaya
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (A.A.K.); (A.A.B.); (E.A.S.)
- Kurchatov Genomics Center IC&G SB RAS, Novosibirsk 630090, Russia
| | - Olga A. Orlovskaya
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Elena A. Salina
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (A.A.K.); (A.A.B.); (E.A.S.)
- Kurchatov Genomics Center IC&G SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|