1
|
Salgueiro BA, Saramago M, Tully MD, Arraiano CM, Moe E, Matos RG, Matias PM, Romão CV. Structure-function mapping and mechanistic insights on the SARS CoV2 Nsp1. Protein Sci 2024; 33:e5228. [PMID: 39584680 PMCID: PMC11586866 DOI: 10.1002/pro.5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
Non-structural protein 1 (Nsp1) is a key component of the infectious process caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), responsible for the COVID-19 pandemic. Our previous data demonstrated that Nsp1 can degrade both RNA and DNA in the absence of the ribosome, a process dependent on the metal ions Mn2+, Ca2+, or Mg2+ (Salgueiro et al., SARS-CoV2 Nsp1 is a metal-dependent DNA and RNA endonuclease. Biometals. 2024;37:1127-1146). The protein is composed of two structural domains: the N-terminal domain (NTD) and C-terminal domain (CTD), connected by a loop. To elucidate the function of each structural domain, we generated four truncated versions of Nsp1 containing either the NTD or the CTD. Our results indicate that the Nsp1SARS-CoV2 domains play distinct functional roles. Specifically, the NTD is involved in nucleotide binding and regulation, while the CTD acts as the catalytic domain. Moreover, a tyrosyl radical was detected during the nuclease activity, and an in-depth analysis of the different constructs suggested that Y136 could be involved in this process. Indeed, our results show that Y136F Nsp1 variant lacks DNA nuclease activity but retains its RNA nuclease activity. Furthermore, we observed that the CTD has a propensity to associate with hydrophobic environments, suggesting that it might associate with cell membranes. However, the cellular function of this association requires further investigation. This study sheds light on the functions of the individual domains of Nsp1, providing valuable insights into its mechanism of action in Coronaviruses.
Collapse
Affiliation(s)
- Bruno A. Salgueiro
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Margarida Saramago
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Mark D. Tully
- ESRF, European Synchrotron Radiation FacilityGrenoble Cedex 9France
| | - Cecília M. Arraiano
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Elin Moe
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Rute G. Matos
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Pedro M. Matias
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
- iBET – Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Célia V. Romão
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
2
|
Salgueiro BA, Saramago M, Tully MD, Issoglio F, Silva STN, Paiva ACF, Arraiano CM, Matias PM, Matos RG, Moe E, Romão CV. SARS-CoV2 Nsp1 is a metal-dependent DNA and RNA endonuclease. Biometals 2024; 37:1127-1146. [PMID: 38538957 PMCID: PMC11473540 DOI: 10.1007/s10534-024-00596-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/05/2024] [Indexed: 10/15/2024]
Abstract
Over recent years, we have been living under a pandemic, caused by the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). One of the major virulence factors of Coronaviruses is the Non-structural protein 1 (Nsp1), known to suppress the host cells protein translation machinery, allowing the virus to produce its own proteins, propagate and invade new cells. To unveil the molecular mechanisms of SARS-CoV2 Nsp1, we have addressed its biochemical and biophysical properties in the presence of calcium, magnesium and manganese. Our findings indicate that the protein in solution is a monomer and binds to both manganese and calcium, with high affinity. Surprisingly, our results show that SARS-CoV2 Nsp1 alone displays metal-dependent endonucleolytic activity towards both RNA and DNA, regardless of the presence of host ribosome. These results show Nsp1 as new nuclease within the coronavirus family. Furthermore, the Nsp1 double variant R124A/K125A presents no nuclease activity for RNA, although it retains activity for DNA, suggesting distinct binding sites for DNA and RNA. Thus, we present for the first time, evidence that the activities of Nsp1 are modulated by the presence of different metals, which are proposed to play an important role during viral infection. This research contributes significantly to our understanding of the mechanisms of action of Coronaviruses.
Collapse
Affiliation(s)
- Bruno A Salgueiro
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Margarida Saramago
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Mark D Tully
- ESRF, European Synchrotron Radiation Facility, 71, avenue des Martyrs CS 40220, 38043, Grenoble Cedex 9, France
| | - Federico Issoglio
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Sara T N Silva
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Ana C F Paiva
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Cecília M Arraiano
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Pedro M Matias
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Rute G Matos
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Elin Moe
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- Department of Chemistry, UiT, the Arctic University of Norway, Tromsø, Norway.
| | - Célia V Romão
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
3
|
Ma S, Damfo S, Bowler MW, Mykhaylyk V, Kozielski F. High-confidence placement of low-occupancy fragments into electron density using the anomalous signal of sulfur and halogen atoms. Acta Crystallogr D Struct Biol 2024; 80:451-463. [PMID: 38841886 PMCID: PMC11154595 DOI: 10.1107/s2059798324004480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C-I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.
Collapse
Affiliation(s)
- Shumeng Ma
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Shymaa Damfo
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Mounawarah 30078, Saudi Arabia
| | | | - Vitaliy Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - Frank Kozielski
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
4
|
Huang TC, Liang KH, Chang TJ, Hung KF, Wang ML, Cheng YF, Liao YT, Yang DM. Structure-based approaches against COVID-19. J Chin Med Assoc 2024; 87:139-141. [PMID: 38305483 DOI: 10.1097/jcma.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had a major impact on human life. This review highlights the versatile roles of both classical and modern structure-based approaches for COVID-19. X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryogenic electron microscopy are the three cornerstones of classical structural biology. These technologies have helped provide fundamental and detailed knowledge regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the related human host proteins as well as enabled the identification of its target sites, facilitating the cessation of its transmission. Further progress into protein structure modeling was made using modern structure-based approaches derived from homology modeling and integrated with artificial intelligence (AI), facilitating advanced computational simulation tools to actively guide the design of new vaccines and the development of anti-SARS-CoV-2 drugs. This review presents the practical contributions and future directions of structure-based approaches for COVID-19.
Collapse
Affiliation(s)
- Ta-Chou Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Biomedical Informatics, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Tai-Jay Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Genome Research, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ting Liao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - De-Ming Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Vankadari N, Ghosal D. Structural Insights into SARS-CoV-2 Nonstructural Protein 1 Interaction with Human Cyclophilin and FKBP1 to Regulate Interferon Production. J Phys Chem Lett 2024; 15:919-924. [PMID: 38241259 DOI: 10.1021/acs.jpclett.3c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 coronavirus and the perpetual rise of new variants warrant investigation of the molecular and structural details of the infection process and modulation of the host defense by viral proteins. This Letter reports the combined experimental and computational approaches to provide key insights into the structural and functional basis of Nsp1's association with different cyclophilins and FKBPs in regulating COVID-19 infection. We demonstrated the real-time stability and functional dynamics of the Nsp1-CypA/FKBP1A complex and investigated the repurposing of potential inhibitors that could block these interactions. Overall, we provided insights into the inhibitory role Nsp1 in downstream interferon production, a key aspect for host defense that prevents the SARS-CoV-2 or related family of corona virus infection.
Collapse
Affiliation(s)
- Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3000, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3000, Australia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3000, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3000, Australia
| |
Collapse
|
6
|
Maurina SF, O'Sullivan JP, Sharma G, Pineda Rodriguez DC, MacFadden A, Cendali F, Henen MA, Vögeli B, Kieft JS, Glasgow A, Steckelberg AL. An Evolutionarily Conserved Strategy for Ribosome Binding and Host Translation Inhibition by β-coronavirus Non-structural Protein 1. J Mol Biol 2023; 435:168259. [PMID: 37660941 PMCID: PMC10543557 DOI: 10.1016/j.jmb.2023.168259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
An important pathogenicity factor of SARS-CoV-2 and related coronaviruses is Non-structural protein 1 (Nsp1), which suppresses host gene expression and stunts antiviral signaling. SARS-CoV-2 Nsp1 binds the ribosome to inhibit translation through mRNA displacement and induces degradation of host mRNAs. Here we show that Nsp1-dependent host shutoff is conserved in diverse coronaviruses, but only Nsp1 from β-Coronaviruses (β-CoV) inhibits translation through ribosome binding. The C-terminal domain (CTD) of all β-CoV Nsp1s confers high-affinity ribosome binding despite low sequence conservation. Modeling of interactions of four Nsp1s with the ribosome identified the few absolutely conserved amino acids that, together with an overall conservation in surface charge, form the β-CoV Nsp1 ribosome-binding domain. Contrary to previous models, the Nsp1 ribosome-binding domain is an inefficient translation inhibitor. Instead, the Nsp1-CTD likely functions by recruiting Nsp1's N-terminal "effector" domain. Finally, we show that a cis-acting viral RNA element has co-evolved to fine-tune SARS-CoV-2 Nsp1 function, but does not provide similar protection against Nsp1 from related viruses. Together, our work provides new insight into the diversity and conservation of ribosome-dependent host-shutoff functions of Nsp1, knowledge that could aid future efforts in pharmacological targeting of Nsp1 from SARS-CoV-2 and related human-pathogenic β-CoVs. Our study also exemplifies how comparing highly divergent Nsp1 variants can help to dissect the different modalities of this multi-functional viral protein.
Collapse
Affiliation(s)
- Stephanie F Maurina
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - John P O'Sullivan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Geetika Sharma
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA; RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anum Glasgow
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Kosenko M, Onkhonova G, Susloparov I, Ryzhikov A. SARS-CoV-2 proteins structural studies using synchrotron radiation. Biophys Rev 2023; 15:1185-1194. [PMID: 37974992 PMCID: PMC10643813 DOI: 10.1007/s12551-023-01153-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
In the process of the development of structural biology, both the size and the complexity of the determined macromolecular structures have grown significantly. As a result, the range of application areas for the results of structural studies of biological macromolecules has expanded. Significant progress in the development of structural biology methods has been largely achieved through the use of synchrotron radiation. Modern sources of synchrotron radiation allow to conduct high-performance structural studies with high temporal and spatial resolution. Thus, modern techniques make it possible to obtain not only static structures, but also to study dynamic processes, which play a key role in understanding biological mechanisms. One of the key directions in the development of structural research is the drug design based on the structures of biomolecules. Synchrotron radiation offers insights into the three-dimensional time-resolved structure of individual viral proteins and their complexes at atomic resolution. The rapid and accurate determination of protein structures is crucial for understanding viral pathogenicity and designing targeted therapeutics. Through the application of experimental techniques, including X-ray crystallography and small-angle X-ray scattering (SAXS), it is possible to elucidate the structural details of SARS-CoV-2 virion containing 4 structural, 16 nonstructural proteins (nsp), and several accessory proteins. The most studied potential targets for vaccines and drugs are the structural spike (S) protein, which is responsible for entering the host cell, as well as nonstructural proteins essential for replication and transcription, such as main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp). This article provides a brief overview of structural analysis techniques, with focus on synchrotron radiation-based methods applied to the analysis of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Maksim Kosenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Galina Onkhonova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Ivan Susloparov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Alexander Ryzhikov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| |
Collapse
|
8
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
9
|
Maurina SF, O’Sullivan JP, Sharma G, Pineda Rodriguez DC, MacFadden A, Cendali F, Henen MA, Kieft JS, Glasgow A, Steckelberg AL. An evolutionarily conserved strategy for ribosome binding and inhibition by β-coronavirus non-structural protein 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544141. [PMID: 37333070 PMCID: PMC10274807 DOI: 10.1101/2023.06.07.544141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
An important pathogenicity factor of SARS-CoV-2 and related coronaviruses is Nsp1, which suppresses host gene expression and stunts antiviral signaling. SARS-CoV-2 Nsp1 binds the ribosome to inhibit translation through mRNA displacement and induces degradation of host mRNAs through an unknown mechanism. Here we show that Nsp1-dependent host shutoff is conserved in diverse coronaviruses, but only Nsp1 from β-CoV inhibits translation through ribosome binding. The C-terminal domain of all β-CoV Nsp1s confers high-affinity ribosome-binding despite low sequence conservation. Modeling of interactions of four Nsp1s to the ribosome identified few absolutely conserved amino acids that, together with an overall conservation in surface charge, form the β-CoV Nsp1 ribosome-binding domain. Contrary to previous models, the Nsp1 ribosome-binding domain is an inefficient translation inhibitor. Instead, the Nsp1-CTD likely functions by recruiting Nsp1's N-terminal "effector" domain. Finally, we show that a viral cis -acting RNA element has co-evolved to fine-tune SARS-CoV-2 Nsp1 function, but does not provide similar protection against Nsp1 from related viruses. Together, our work provides new insight into the diversity and conservation of ribosome-dependent host-shutoff functions of Nsp1, knowledge that could aide future efforts in pharmacological targeting of Nsp1 from SARS-CoV-2, but also related human-pathogenic β-coronaviruses. Our study also exemplifies how comparing highly divergent Nsp1 variants can help to dissect the different modalities of this multi-functional viral protein.
Collapse
Affiliation(s)
- Stephanie F. Maurina
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - John P. O’Sullivan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Geetika Sharma
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- Current address: New York Structural Biology Center, New York, NY, USA
| | - Anum Glasgow
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Abaeva IS, Arhab Y, Miścicka A, Hellen CUT, Pestova TV. In vitro reconstitution of SARS CoV-2 Nsp1-induced mRNA cleavage reveals the key roles of the N-terminal domain of Nsp1 and the RRM domain of eIF3g. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542379. [PMID: 37292671 PMCID: PMC10245999 DOI: 10.1101/2023.05.25.542379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS CoV-2 nonstructural protein 1 (Nsp1) is the major pathogenesis factor that inhibits host translation using a dual strategy of impairing initiation and inducing endonucleolytic cleavage of cellular mRNAs. To investigate the mechanism of cleavage, we reconstituted it in vitro on β-globin, EMCV IRES and CrPV IRES mRNAs that use unrelated initiation mechanisms. In all instances, cleavage required Nsp1 and only canonical translational components (40S subunits and initiation factors), arguing against involvement of a putative cellular RNA endonuclease. Requirements for initiation factors differed for these mRNAs, reflecting their requirements for ribosomal attachment. Cleavage of CrPV IRES mRNA was supported by a minimal set of components consisting of 40S subunits and eIF3g's RRM domain. The cleavage site was located in the coding region 18 nucleotides downstream from the mRNA entrance indicating that cleavage occurs on the solvent side of the 40S subunit. Mutational analysis identified a positively charged surface on Nsp1's N-terminal domain (NTD) and a surface above the mRNA-binding channel on eIF3g's RRM domain that contain residues essential for cleavage. These residues were required for cleavage on all three mRNAs, highlighting general roles of Nsp1-NTD and eIF3g's RRM domain in cleavage per se, irrespective of the mode of ribosomal attachment.
Collapse
Affiliation(s)
- Irina S. Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Tatyana V. Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|