1
|
Huang L, Huang M, Zhou T. Efficient Strategy for Characterization and Quantification of Polyunsaturated Lipids by Microwave-Assisted MMPP Epoxidation. Anal Chem 2024; 96:11189-11197. [PMID: 38965741 DOI: 10.1021/acs.analchem.4c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Lipids play integral roles in biological processes, with carbon-carbon double bonds (C═C) markedly influencing their structure and function. Precise characterization and quantification of unsaturated lipids are crucial for understanding lipid physiology and discovering disease biomarkers. However, using mass spectrometry for these purposes presents significant challenges. In this study, we developed a microwave-assisted magnesium monoperoxyphthalate hexahydrate (MMPP) epoxidation reaction, coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), to analyze unsaturated lipids. Microwave irradiation expedited the MMPP epoxidation, achieving complete derivatization in 10 min without byproducts. A diagnostic ion pair, displaying a 16 Da mass difference, effectively identified the location of the C═C bond in mass spectra. Microwave irradiation also significantly facilitated the epoxidation reaction of polyunsaturated lipids, achieving yields greater than 85% and yielding a complete epoxidation product. This simplifies chromatographic separation and aids in accurate quantification. Additionally, a purification process was implemented to remove excess derivatization reagents, significantly reducing mass spectrometry response suppression and enhancing analytical reproducibility. The method's effectiveness was validated by analyzing unsaturated lipids in rat plasma from a type I diabetes model. We quantified nine unsaturated lipids and characterized 42 fatty acids and glycerophospholipids. The results indicated that unsaturated fatty acids increased in diabetic plasma while unsaturated glycerophospholipids decreased. Furthermore, the relative abundances of Δ9/Δ11 isomer pairs also exhibited a close association with diabetes. In conclusion, microwave-assisted MMPP epoxidation coupled with LC-MS/MS provides an effective strategy for characterization and quantification of polyunsaturated lipids, offering deeper insight into the physiological impact of unsaturated lipids in related diseases.
Collapse
Affiliation(s)
- Longhui Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Minhan Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Liang W, Zhou Z, Gao Q, Zhu Z, Zhu J, Lin J, Wen Y, Qian F, Wang L, Zhai Y, Lv J, Zhang H, Zhong F, Du H. Tumor-derived Prevotella intermedia aggravates gastric cancer by enhancing Perilipin 3 expression. Cancer Sci 2024; 115:1141-1153. [PMID: 38287724 PMCID: PMC11007001 DOI: 10.1111/cas.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
The indigenous microbial milieu within tumorous tissues exerts a pivotal influence on the genesis and advancement of gastric cancer (GC). This investigation scrutinizes the functions and molecular mechanisms attributed to Prevotella intermedia in the malignant evolution of GC. Isolation of P. intermedia from paired GC tissues was undertaken. Quantification of P. intermedia abundance in 102 tissues was accomplished using quantitative real-time PCR (qRT-PCR). Assessment of the biological effects of P. intermedia on GC cells was observed using culture medium supernatant. Furthermore, the protein profile of GC cells treated with tumor-derived P. intermedia was examined through label-free protein analysis. The functionality of perilipin 3 (PLIN3) was subsequently confirmed using shRNA. Our investigation revealed that the relative abundance of P. intermedia in tumor tissues significantly surpassed that of corresponding healthy tissues. The abundance of P. intermedia exhibited correlations with tumor differentiation (p = 0.006), perineural invasion (p = 0.004), omentum majus invasion (p = 0.040), and the survival duration of GC patients (p = 0.042). The supernatant derived from tumor-associated P. intermedia bolstered the proliferation, clone formation, migration, and invasion of GC cells. After indirect co-cultivation with tumor-derived P. intermedia, dysregulation of 34 proteins, including PLIN3, was discerned in GC cells. Knockdown of PLIN3 mitigated the malignancy instigated by P. intermedia in GC cells. Our findings posit that P. intermedia from the tumor microenvironment plays a substantial role in the malignant progression of GC via the modulation of PLIN3 expression. Moreover, the relative abundance of P. intermedia might serve as a potential biomarker for the diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Wei Liang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Zhengyang Zhou
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Qizhao Gao
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhichen Zhu
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jie Zhu
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jiayao Lin
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yicheng Wen
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Feinan Qian
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Liang Wang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yaxuan Zhai
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jingnan Lv
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haifang Zhang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Fengyun Zhong
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Hong Du
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
3
|
He Y, Liu L, Dong Y, Zhang X, Song Y, Jing Y, Ni Y, Wang Y, Wang Z, Ding L. Lipid droplets-related Perilipin-3: potential immune checkpoint and oncogene in oral squamous cell carcinoma. Cancer Immunol Immunother 2024; 73:78. [PMID: 38554152 PMCID: PMC10981595 DOI: 10.1007/s00262-024-03659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/20/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Lipid droplets (LDs) as major lipid storage organelles are recently reported to be innate immune hubs. Perilipin-3 (PLIN3) is indispensable for the formation and accumulation of LDs. Since cancer patients show dysregulated lipid metabolism, we aimed to elaborate the role of LDs-related PLIN3 in oral squamous cell carcinoma (OSCC). METHODS PLIN3 expression patterns (n = 87), its immune-related landscape (n = 74) and association with B7-H2 (n = 51) were assessed by immunohistochemistry and flow cytometry. Real-time PCR, Western blot, Oil Red O assay, immunofluorescence, migration assay, spheroid-forming assay and flow cytometry were performed for function analysis. RESULTS Spotted LDs-like PLIN3 staining was dominantly enriched in tumor cells than other cell types. PLIN3high tumor showed high proliferation index with metastasis potential, accompanied with less CD3+CD8+ T cells in peripheral blood and in situ tissue, conferring immunosuppressive microenvironment and shorter postoperative survival. Consistently, PLIN3 knockdown in tumor cells not only reduced LD deposits and tumor migration, but benefited for CD8+ T cells activation in co-culture system with decreased B7-H2. An OSCC subpopulation harbored PLIN3highB7-H2high tumor showed more T cells exhaustion, rendering higher risk of cancer-related death (95% CI 1.285-6.851). CONCLUSIONS LDs marker PLIN3 may be a novel immunotherapeutic target in OSCC.
Collapse
Affiliation(s)
- Yijia He
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lingyun Liu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuexin Dong
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zhiyong Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Cisneros-Villanueva M, Fonseca-Montaño MA, Ríos-Romero M, López-Camarillo C, Jiménez-Morales S, Langley E, Rosette-Rueda AS, Cedro-Tanda A, Hernández-Sotelo D, Hidalgo-Miranda A. LncRNA SOX9-AS1 triggers a transcriptional program involved in lipid metabolic reprogramming, cell migration and invasion in triple-negative breast cancer. Sci Rep 2024; 14:1483. [PMID: 38233470 PMCID: PMC10794186 DOI: 10.1038/s41598-024-51947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
At the molecular level, triple-negative breast cancer (TNBC) is frequently categorized as PAM50 basal-like subtype, but despite the advances in molecular analyses, the clinical outcome for these subtypes is uncertain. Long non-coding RNAs (lncRNAs) are master regulators of genes involved in hallmarks of cancer, which makes them suitable biomarkers for breast cancer (BRCA) diagnosis and prognosis. Here, we evaluated the regulatory role of lncRNA SOX9-AS1 in these subtypes. Using the BRCA-TCGA cohort, we observed that SOX9-AS1 was significantly overexpressed in basal-like and TNBC in comparison with other BRCA subtypes. Survival analyzes showed that SOX9-AS1 overexpression was associated with a favorable prognosis in TNBC and basal-like patients. To study the functions of SOX9-AS1, we determined the expression levels in a panel of nine BRCA cell lines finding increased levels in MDA-MB-468 and HCC1187 TNBC. Using subcellular fractionation in these cell lines, we ascertained that SOX9-AS1 was located in the cytoplasmic compartment. In addition, we performed SOX9-AS1 gene silencing using two short-harping constructs, which were transfected in both cell models and performed a genome-wide RNA-seq analysis. Data showed that 351 lncRNAs and 740 mRNAs were differentially expressed in MDA-MB-468 while 56 lncRNAs and 100 mRNAs were modulated in HCC1187 cells (Log2FC < - 1.5 and > 1.5, p.adj value < 0.05). Pathway analysis revealed that the protein-encoding genes potentially regulate lipid metabolic reprogramming, and epithelial-mesenchymal transition (EMT). Expression of lipid metabolic-related genes LIPE, REEP6, GABRE, FBP1, SCD1, UGT2B11, APOC1 was confirmed by RT-qPCR. Functional analysis demonstrated that the knockdown of SOX9-AS1 increases the triglyceride synthesis, cell migration and invasion in both two TNBC cell lines. In conclusion, high SOX9-AS1 expression predicts an improved clinical course in patients, while the loss of SOX9-AS1 expression enhances the aggressiveness of TNBC cells.
Collapse
Affiliation(s)
- Mireya Cisneros-Villanueva
- Laboratorio Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico, México
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero (UAGro), Chilpancingo de los Bravo, Guerrero, México
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero (UAGro), Chilpancingo de los Bravo, Guerrero, México
| | - Marco Antonio Fonseca-Montaño
- Laboratorio Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico, México
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico, México
| | - Magdalena Ríos-Romero
- Laboratorio Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico, México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, México
| | - Silvia Jiménez-Morales
- Laboratorio Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico, México
| | - Elizabeth Langley
- Laboratorio de Cáncer Hormono Regulado, Instituto Nacional de Cancerología (INCan), 14080, Mexico, México
| | - Alan Sajid Rosette-Rueda
- Laboratorio Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico, México
| | | | - Daniel Hernández-Sotelo
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero (UAGro), Chilpancingo de los Bravo, Guerrero, México.
| | - Alfredo Hidalgo-Miranda
- Laboratorio Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico, México.
| |
Collapse
|
5
|
Premachandran S, Dhinakaran AK, Das S, Venkatakrishnan K, Tan B, Sharma M. Detection of lung cancer metastasis from blood using L-MISC nanosensor: Targeting circulating metastatic cues for improved diagnosis. Biosens Bioelectron 2024; 243:115782. [PMID: 37890388 DOI: 10.1016/j.bios.2023.115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Metastatic lung cancers are considered one of the most clinically significant malignancies, comprising about 40% of deaths caused by cancers. Detection of lung cancer metastasis prior to symptomatic relapse is critical for timely diagnosis and clinical management. The onset of cancer metastasis is indicated by the manifestation of tumor-shed signatures from the primary tumor in peripheral circulation. A subset of this population, characterized as the metastasis-initiating stem cells, are capable of invasion, tumor initiation, and propagation of metastasis at distant sites. In this study, we have developed a SERS-functionalised L-MISC (Lung-Metastasis Initiating Stem Cells) nanosensor to accurately capture the trace levels of metastatic signatures directly from patient blood. We investigated the signatures of cancer stem cell enriched heterogenous population of primary and metastatic lung cancer cells to establish a metastatic profile unique to lung cancer. Multivariate statistical analyses revealed statistically significant differences in the molecular profiles of healthy, primary, and metastatic cell populations. The single-cell sensitivity of L-MISC nanosensor enabled a label-free detection of MISCs with high sensitivity and specificity. By employing a robust machine learning model, our diagnostic methodology can accurately detect metastatic lung cancer from not more than 5 μl of blood. A pilot validation of our study was carried out using clinical samples for the prediction of metastatic lung cancers resulting in 100% diagnostic sensitivity. The L-MISC nanosensor is a potential tool for highly rapid, non-invasive, and accurate diagnosis of lung cancer metastasis.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Ashok Kumar Dhinakaran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Sunit Das
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Nano Characterization Laboratory, Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Mansi Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
6
|
Hsu WL, Hsieh YT, Chen WM, Chien MH, Luo WJ, Chang JH, Devlin K, Su KY. High-fat diet induces C-reactive protein secretion, promoting lung adenocarcinoma via immune microenvironment modulation. Dis Model Mech 2023; 16:dmm050360. [PMID: 37929799 PMCID: PMC10651111 DOI: 10.1242/dmm.050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
To understand the effects of a high-fat diet (HFD) on lung cancer progression and biomarkers, we here used an inducible mutant epidermal growth factor receptor (EGFR)-driven lung cancer transgenic mouse model fed a regular diet (RD) or HFD. The HFD lung cancer (LC-HFD) group exhibited significant tumor formation and deterioration, such as higher EGFR activity and proliferation marker expression, compared with the RD lung cancer (LC-RD) group. Transcriptomic analysis of the lung tissues revealed that the significantly changed genes in the LC-HFD group were highly enriched in immune-related signaling pathways, suggesting that an HFD alters the immune microenvironment to promote tumor growth. Cytokine and adipokine arrays combined with a comprehensive analysis using meta-database software indicated upregulation of C-reactive protein (CRP) in the LC-HFD group, which presented with increased lung cancer proliferation and metastasis; this was confirmed experimentally. Our results imply that an HFD can turn the tumor growth environment into an immune-related pro-tumorigenic microenvironment and demonstrate that CRP has a role in promoting lung cancer development in this microenvironment.
Collapse
Affiliation(s)
- Wei-Lun Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Yun-Ting Hsieh
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Wei-Ming Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Min-Hui Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Wei-Jia Luo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Jung-Hsuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kevin Devlin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10055, Taiwan
| |
Collapse
|
7
|
Kopec M, Beton-Mysur K, Abramczyk H. Raman imaging and chemometric methods in human normal bronchial and cancer lung cells: Raman biomarkers of lipid reprogramming. Chem Phys Lipids 2023; 257:105339. [PMID: 37748746 DOI: 10.1016/j.chemphyslip.2023.105339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
This paper presents an approach to study biochemical changes in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging combined with chemometric methods. Based on Raman spectra and Raman imaging combined with chemometric methods we have proved that peaks at 845 cm-1, 2845 cm-1, 2936 cm-1, 1444 cm-1, 750 cm-1, 1126 cm-1, 1584 cm-1, can be treated as Raman biomarkers probing phosphorylation, lipid reprogramming, oxidative phosphorylation and changes in cholesterol and cytochrome in normal and cancer cells. Raman analysis of the bands at 845 cm-1, 2845 cm-1, 1444 cm-1, and 1126 cm-1 in human cancer lung cells and human normal bronchial cells demonstrate enhanced phosphorylation and triglycerides de novo synthesis, reduced levels of cholesterol and cytochrome c in cancer cells. The sensitivity is equal to 100% (nucleus), 87.5% (mitochondria), 100% (endoplasmic reticulum), 87.5% (lipid droplets), 87.5% (cytoplasm), 87.5% (cell membrane) for A549 cell line and 83.3% (nucleus), 100% (mitochondria), 83.3% (endoplasmic reticulum), 100% (lipid droplets), 100% (cytoplasm), 83.3% (cell membrane) for BEpiC. The values of specificity for cross-validation equal 93.4% (nucleus), 85.5% (mitochondria), 89.5% (endoplasmic reticulum), 90.8% (lipid droplets), 61.8% (cytoplasm), 94.7% (cell membrane) for A549 cell line and 88.5% (nucleus), 85.9% (mitochondria), 85.9% (endoplasmic reticulum), 97.4% (lipid droplets), 75.6% (cytoplasm), 92.3% (cell membrane) for BEpiC. We have confirmed that Raman spectroscopy methods combined with PLS-DA are useful tools to monitor changes in human cancer lung cells and human normal bronchial cells.
Collapse
Affiliation(s)
- Monika Kopec
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, Lodz 93-590, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, Lodz 93-590, Poland
| | - Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, Lodz 93-590, Poland
| |
Collapse
|
8
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|