1
|
Naiel MAE, Taher ES, Rashed F, Ghazanfar S, Shehata AM, Mohammed NA, Pascalau R, Smuleac L, Ibrahim AM, Abdeen A, Shukry M. The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon 2024; 10:e36314. [PMID: 39286167 PMCID: PMC11402758 DOI: 10.1016/j.heliyon.2024.e36314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Heavy metal contamination threatens the aquatic environment and human health. Different physical and chemical procedures have been adopted in many regions; however, their adoption is usually limited since they take longer time, are more expensive, and are ineffective in polluted areas with high heavy metal contents. Thus, biological remediation is considered a suitable applicable method for treating contaminates due to its aquatic-friendly features. Bacteria possess an active metabolism that enables them to thrive and develop in highly contaminated water bodies with arsenic (As). They achieve this by utilizing their genetic structure to selectively target As and deactivate its toxic influences. Therefore, this review extensively inspects the bacterial reactions and interactions with As. In addition, this literature demonstrated the potential of certain genetically engineered bacterial strains to upregulate the expression and activity of specific genes associated with As detoxification. The As resistant mechanisms in bacteria exhibit significant variation depending on the genetics and type of the bacterium, which is strongly affected by the physical water criteria of their surrounding aquatic environment. Moreover, this literature has attempted to establish scientific connections between existing knowledge and suggested sustainable methods for removing As from aquatic bodies by utilizing genetically engineered bacterial strains. We shall outline the primary techniques employed by bacteria to bioremediate As from aquatic environments. Additionally, we will define the primary obstacles that face the wide application of genetically modified bacterial strains for As bioremediation in open water bodies. This review can serve as a target for future studies aiming to implement real-time bioremediation techniques. In addition, potential synergies between the bioremediation technology and other techniques are suggested, which can be employed for As bioremediation.
Collapse
Affiliation(s)
- Mohammed A E Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Nourelhuda A Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah, 61710, Al-Karak, Jordan
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Romania
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Timisoara, Roman, Romania
| | - Ateya Megahed Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
2
|
Liu J, He C, Tan W, Zheng JH. Path to bacteriotherapy: From bacterial engineering to therapeutic perspectives. Life Sci 2024; 352:122897. [PMID: 38971366 DOI: 10.1016/j.lfs.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The major reason for the failure of conventional therapies is the heterogeneity and complexity of tumor microenvironments (TMEs). Many malignant tumors reprogram their surface antigens to evade the immune surveillance, leading to reduced antigen-presenting cells and hindered T-cell activation. Bacteria-mediated cancer immunotherapy has been extensively investigated in recent years. Scientists have ingeniously modified bacteria using synthetic biology and nanotechnology to enhance their biosafety with high tumor specificity, resulting in robust anticancer immune responses. To enhance the antitumor efficacy, therapeutic proteins, cytokines, nanoparticles, and chemotherapeutic drugs have been efficiently delivered using engineered bacteria. This review provides a comprehensive understanding of oncolytic bacterial therapies, covering bacterial design and the intricate interactions within TMEs. Additionally, it offers an in-depth comparison of the current techniques used for bacterial modification, both internally and externally, to maximize their therapeutic effectiveness. Finally, we outlined the challenges and opportunities ahead in the clinical application of oncolytic bacterial therapies.
Collapse
Affiliation(s)
- Jinling Liu
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China; College of Biology, Hunan University, Changsha 410082, China
| | - Chongsheng He
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Jin Hai Zheng
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China.
| |
Collapse
|
3
|
Zheng L, Shen J, Chen R, Hu Y, Zhao W, Leung ELH, Dai L. Genome engineering of the human gut microbiome. J Genet Genomics 2024; 51:479-491. [PMID: 38218395 DOI: 10.1016/j.jgg.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The human gut microbiome, a complex ecosystem, significantly influences host health, impacting crucial aspects such as metabolism and immunity. To enhance our comprehension and control of the molecular mechanisms orchestrating the intricate interplay between gut commensal bacteria and human health, the exploration of genome engineering for gut microbes is a promising frontier. Nevertheless, the complexities and diversities inherent in the gut microbiome pose substantial challenges to the development of effective genome engineering tools for human gut microbes. In this comprehensive review, we provide an overview of the current progress and challenges in genome engineering of human gut commensal bacteria, whether executed in vitro or in situ. A specific focus is directed towards the advancements and prospects in cargo DNA delivery and high-throughput techniques. Additionally, we elucidate the immense potential of genome engineering methods to enhance our understanding of the human gut microbiome and engineer the microorganisms to enhance human health.
Collapse
Affiliation(s)
- Linggang Zheng
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Juntao Shen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruiyue Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucan Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau 999078, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China.
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Cui Y, Qu X. CRISPR-Cas systems of lactic acid bacteria and applications in food science. Biotechnol Adv 2024; 71:108323. [PMID: 38346597 DOI: 10.1016/j.biotechadv.2024.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
CRISPR-Cas (Clustered regularly interspaced short palindromic repeats-CRISPR associated proteins) systems are widely distributed in lactic acid bacteria (LAB), contributing to their RNA-mediated adaptive defense immunity. The CRISPR-Cas-based genetic tools have exhibited powerful capability. It has been highly utilized in different organisms, accelerating the development of life science. The review summarized the components, adaptive immunity mechanisms, and classification of CRISPR-Cas systems; analyzed the distribution and characteristics of CRISPR-Cas system in LAB. The review focuses on the development of CRISPR-Cas-based genetic tools in LAB for providing latest development and future trend. The diverse and broad applications of CRISPR-Cas systems in food/probiotic industry are introduced. LAB harbor a plenty of CRISPR-Cas systems, which contribute to generate safer and more robust strains with increased resistance against bacteriophage and prevent the dissemination of plasmids carrying antibiotic-resistance markers. Furthermore, the CRISPR-Cas system from LAB could be used to exploit novel, flexible, programmable genome editing tools of native host and other organisms, resolving the limitation of genetic operation of some LAB species, increasing the important biological functions of probiotics, improving the adaptation of probiotics in complex environments, and inhibiting the growth of foodborne pathogens. The development of the genetic tools based on CRISPR-Cas system in LAB, especially the endogenous CRISPR-Cas system, will open new avenues for precise regulation, rational design, and flexible application of LAB.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
5
|
Lv X, Li Y, Xiu X, Liao C, Xu Y, Liu Y, Li J, Du G, Liu L. CRISPR genetic toolkits of classical food microorganisms: Current state and future prospects. Biotechnol Adv 2023; 69:108261. [PMID: 37741424 DOI: 10.1016/j.biotechadv.2023.108261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Production of food-related products using microorganisms in an environmentally friendly manner is a crucial solution to global food safety and environmental pollution issues. Traditional microbial modification methods rely on artificial selection or natural mutations, which require time for repeated screening and reproduction, leading to unstable results. Therefore, it is imperative to develop rapid, efficient, and precise microbial modification technologies. This review summarizes recent advances in the construction of gene editing and metabolic regulation toolkits based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) systems and their applications in reconstructing food microorganism metabolic networks. The development and application of gene editing toolkits from single-site gene editing to multi-site and genome-scale gene editing was also introduced. Moreover, it presented a detailed introduction to CRISPR interference, CRISPR activation, and logic circuit toolkits for metabolic network regulation. Moreover, the current challenges and future prospects for developing CRISPR genetic toolkits were also discussed.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chao Liao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yameng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Guo Q, Yan Y, Zhang Z, Xu B, Bangash HL, Sui X, Yang Y, Zhou Z, Zhao S, Peng N. Developing the Limosilactobacillus reuteri Chassis through an Endogenous Programmable Endonuclease-Based Genome Editing Tool. ACS Synth Biol 2023; 12:3487-3496. [PMID: 37934952 DOI: 10.1021/acssynbio.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Using genetically tractable probiotics to engineer live biotherapeutic products (LBPs) for disease treatment is urgently needed. Limosilactobacillus reuteri is an important vertebrate gut symbiont, which has great potential for developing LBPs. However, in L. reuteri, synthetic biology work is largely limited by the long editing cycle. In this study, we identified a subtype II-A CRISPR-Cas9 system in L. reuteri 03 and found the endogenous Cas9 (LrCas9) recognizing a broad protospacer-adjacent motif (PAM) sequence (3'-NDR; N = A, G, T, C; D = A, G, T; R = A, G). We reprogrammed the LrCas9 for efficient gene deletion (95.46%), point mutation (86.36%), large fragment deletion (40 kb), and gene integration (1743 bp, 73.9%), which uncovered the function of the repeated conserved domains in mucus-binding protein. Moreover, we analyzed the distribution of endogenous endonucleases in 304 strains of L. reuteri and found the existence of programmable endonucleases in 98.36% of L. reuteri strains suggesting the potential to reprogram endogenous endonucleases for genetic manipulation in the majority of L. reuteri strains. In conclusion, this study highlights the development of a new probiotic chassis based on endogenous endonucleases in L. reuteri 03, which paves the way for the development of genome editing tools for functional genetic studies in other L. reuteri. We believe that the development of an endogenous endonuclease-based genetic tool will greatly facilitate the construction of LBPs.
Collapse
Affiliation(s)
- Qiujin Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Yiting Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Zhenting Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou, P.R. China
| | - Boya Xu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Hina Lqbal Bangash
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Xin Sui
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Yalin Yang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
7
|
Kelishadi M, Shahsavarani H, Tabarraei A, Shokrgozar MA, Teimoori-Toolabi L, Azadmanesh K. The chicken chorioallantoic membrane model for isolation of CRISPR/cas9-based HSV-1 mutant expressing tumor suppressor p53. PLoS One 2023; 18:e0286231. [PMID: 37862369 PMCID: PMC10588894 DOI: 10.1371/journal.pone.0286231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively target and kill cancer cells while sparing normal ones. Among them, engineered Herpes simplex virus type 1 (HSV-1) has been proposed as a potential treatment for cancer and was moved to phase III clinical trials. Previous studies showed that design of OV therapy combined with p53 gene therapy increases the anti-cancer activities of OVs. Here, the UL39 gene of the ICP34.5 deleted HSV-1 was manipulated with the insertion of the EGFP-p53 expression cassette utilizing CRISPR/ Cas9 editing approach to enhance oncoselectivity and oncotoxicity capabilities. The ΔUL39/Δγ34.5/HSV1-p53 mutant was isolated using the chorioallantoic membrane (CAM) of fertilized chicken eggs as a complementing membrane to support the growth of the viruses with gene deficiencies. Comparing phenotypic features of ΔUL39/Δγ34.5/HSV1-p53-infected cells with the parent Δγ34.5/HSV-1 in vitro revealed that HSV-1-P53 had cytolytic ability in various cell lines from different origin with different p53 expression rates. Altogether, data presented here illustrate the feasibility of exploiting CAM model as a promising strategy for isolating recombinant viruses such as CRISPR/Cas9 mediated HSV-1-P53 mutant with less virus replication in cell lines due to increased cell mortality induced by exogenous p53.
Collapse
Affiliation(s)
- Mishar Kelishadi
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran
| | - Hosein Shahsavarani
- Faculty of Life Science and Biotechnology, Department of Cell and Molecular Biology, Shahid Beheshti University, Tehran, Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Faculty of Medicine, Department of Virology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Ali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran
| |
Collapse
|