1
|
Lee H, Lim Y, Lee SH. Rapid-acting pain relief in knee osteoarthritis: autologous-cultured adipose-derived mesenchymal stem cells outperform stromal vascular fraction: a systematic review and meta-analysis. Stem Cell Res Ther 2024; 15:446. [PMID: 39568086 PMCID: PMC11580442 DOI: 10.1186/s13287-024-04034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is a leading cause of disability, with current treatment options often falling short of providing satisfactory outcomes. Autologous-cultured adipose-derived mesenchymal stem cells (ADMSCs) and stromal vascular fractions (SVFs) have emerged as potential regenerative therapies. METHODS A comprehensive search was conducted among multiple databases for studies up to June 2023. The risk of bias was assessed in randomized and non-randomized studies, adhering to PRISMA guidelines. The study has been registered with PROSPERO (CRD 42023433160). RESULTS Our analysis encompassed 31 studies involving 1,406 patients, of which, 19 studies with 958 patients were included in a meta-analysis, examining both SVF and autologous-cultured ADMSC methods. Significant pain reduction was observed with autologous-cultured ADMSCs starting at 3 months (MD = -2.43, 95% CI, -3.99, -0.86), whereas significant pain mitigation in response to SVF therapy was found to start at 12 months (MD = -2.13, 95% CI, -3.06, -1.21). Both autologous-cultured ADMSCs and SVF provided significant improvement in knee function starting at 12 months (MD = -9.19, 95% CI, -12.48, -5.90 vs. MD = -9.09, 95% CI, -12.67, -5.51, respectively). We found no evidence of severe adverse events linked directly to ADMSC therapy. CONCLUSION Autologous-cultured ADMSCs offer a promising alternative for more rapid pain relief in knee OA, with both ADMSCs and SVF demonstrating substantial long-term benefits in joint function and cartilage regeneration, in the absence of any severe ADMSC-related adverse events.
Collapse
Affiliation(s)
- Haneul Lee
- Department of Physical Therapy, College of Medical Science, Gachon University, Incheon, Korea
| | - Youngeun Lim
- Department of Physical Therapy, College of Medical Science, Gachon University, Incheon, Korea
| | - Seon-Heui Lee
- College of Nursing, Research Institute of AI and Nursing Science, Gachon University, Incheon, Korea.
| |
Collapse
|
2
|
de Sousa EB, Gabbi Filho JPA, Gameiro VS, Baptista LS. Adipose-derived stem cells and knee osteoarthritis: New perspectives, old concerns. World J Orthop 2024; 15:1001-1006. [PMID: 39600863 PMCID: PMC11586737 DOI: 10.5312/wjo.v15.i11.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
In this editorial, we comment on the paper by Muthu et al published in the recent issue of the journal. This editorial review focusses on the use of adipose-derived stem cells (ADSCs) in knee osteoarthritis treatment. We discuss the differences between the stromal vascular fraction and microfragmented adipose tissue and highlight the results of clinical studies comparing both treatments and the use of hyaluronic acid, platelet-rich plasma, and bone marrow aspirate concentrate. The use of expanded ADSCs is also discussed; moreover, concerns regarding treatment with ADSCs, particularly the heterogeneity of published studies and the need to standardize protocols to explore clinical potential is explored.
Collapse
Affiliation(s)
- Eduardo B de Sousa
- Department of General and Specialized Surgery, Fluminense Federal University, Rio de Janeiro 24070-090, Brazil
| | | | - Vinicius S Gameiro
- Department of General and Specialized Surgery, Fluminense Federal University, Rio de Janeiro 24070-090, Brazil
| | - Leandra S Baptista
- Duque de Caxias Campus Prof Geraldo Cidade, Federal University of Rio de Janeiro, Rio de Janeiro 25065-050, Brazil
| |
Collapse
|
3
|
Filho JPGA, Macedo RDR, Centurion P, de Sousa EB. Arthroscopy With Adipose-Derived Stromal Vascular Fraction Using a Selective Tissue Engineering Photo-Stimulation Technique for the Treatment of Mild to Moderate Knee Osteoarthritis. Arthrosc Tech 2024; 13:103015. [PMID: 39233810 PMCID: PMC11369935 DOI: 10.1016/j.eats.2024.103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/08/2024] [Indexed: 09/06/2024] Open
Abstract
Osteoarthritis (OA) is characterized by articular cartilage degeneration, synovial inflammation, and subchondral bone thickening, affecting the synovial joint as an organ and leading to pain and disability. Subcutaneous stromal vascular fraction is safe and relieves pain, improves function, and repairs cartilage defects in patients with knee OA. Our goal is to describe step-by-step the arthroscopic treatment of mild to moderate knee OA with photo-stimulated stromal vascular fraction harvested from the thigh using a selective tissue engineering photo-stimulation ("One S.T.E.P.") technique.
Collapse
Affiliation(s)
- José Paulo Gabbi Aramburu Filho
- Orthopaedics and Traumatology Service, Rio de Janeiro Military Police Central Hospital, Rio de Janeiro, Brazil
- Hospital Quinta D’Or, Rio de Janeiro, Brazil
| | - Rafael da Rocha Macedo
- Hospital IFOR–Rede D’Or São Luiz, São Bernardo do Campo, Brazil
- Discipline of Orthopaedics and Traumatology, ABC Faculty of Medicine, Santo André, Brazil
| | - Patricio Centurion
- Biomedical Sciences Investigation Institute, Ricardo Palma University, Lima, Peru
| | - Eduardo Branco de Sousa
- General and Specialized Surgery Department, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
4
|
Copcu HE. Autologization of Exosomes with Deparenchymized Adipose Tissue: An Innovative Approach for Regenerative Medicine and Surgery. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5982. [PMID: 39015362 PMCID: PMC11251682 DOI: 10.1097/gox.0000000000005982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 07/18/2024]
Abstract
Background Among all regenerative applications developed in recent years, the use of exosomes has generated by far the greatest interest. Exosome products from allogeneic and xenogeneic sources are available on the market. A key challenge is controlling the effects of nonautologous exosomes. We hypothesized that combining exosomes with a patient's own extracellular matrix (ECM) can create "autologization," enabling control over their effects. This study aimed to provide the rationale and a guide for future research exploring the autologization of exosome applications using deparenchymized adipose tissue (DPAT). Methods DPAT adipose tissue was achieved using 1200-, 400-, and 35-micrometer blades in an ultrasharp blade system (Adinizer), and then "autologization" was achieved by combining the obtained DPAT with allogeneic exosomes. DPAT was evaluated histochemically, and exosomes were counted and analyzed with the Nanosight device. Results The DPAT process using ultrasharp blades is easily performed. DPAT obtained from adipose tissue was then combined with allogenic exosomes. It has been demonstrated histopathologically that adipocytes are eliminated in deparenchymized fat tissue, and only ECM and stromal cells remain. It has also been proven that the number of exosomes is not affected by the combination. Conclusions This study introduces two novel concepts previously unknown in the literature, "deparenchymization" and "autologization," representing an innovative approach in plastic surgery and regenerative medicine. Our novel approach enriches regenerative cells while preserving critical ECM signals, overcoming the limitations of existing isolation methods. Extensive research is still needed, but autologization using DPAT ECM holds great promise for translating exosome-based treatments into practice.
Collapse
Affiliation(s)
- H. Eray Copcu
- From the Aesthetic, Plastic and Reconstructive Surgery, G-CAT (Gene, and Tissue) Academy, Istanbul, Turkey
| |
Collapse
|
5
|
Zannoni F, Caravelli S, Russo A, Perisano C, Greco T, Baiardi A, Di Ponte M, Vocale E, Mosca M. Clinical results in patients affected by moderate-severe knee osteoarthritis and treated with micro-fragmented adipose tissue: the therapeutic effects on symptomatology. Musculoskelet Surg 2024; 108:215-224. [PMID: 38602604 DOI: 10.1007/s12306-024-00816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Osteoarthrosis is a degenerative musculoskeletal disease that presents a major public health problem, due to the increasing average age of the active population, as well as the increasing percentage of obesity or overweight of the general population. New therapeutic approaches have been developed, such as regenerative medicine that uses mesenchymal stromal cells taken from adipose tissue. This study analyzed the clinical potential benefits of using autologous adipose tissue to treat patients with moderate-severe knee osteoarthritis.In 2021, a total of 50 knees, affected by moderate-severe knee osteoarthritis, were treated with an intra-articular injection of micro-fragmented subcutaneous adipose tissue. Patients were submitted to the KOOS questionnaire before the operation and one year after the operation and VAS pain score at time 0, 3, 6, 12 months.Of the 50 patients treated, 2 patients were excluded from the study. Of the remaining 48 patients, improvements have been achieved in all subclasses of KOOS. In particular, VAS score proves that improvements are more considerable starting from the 3rd month after surgery.The results obtained in this study show the safety and potential benefit of the use of autologous micro-fragmented adipose on people who are affected by moderate-severe knee osteoarthritis.
Collapse
Affiliation(s)
- F Zannoni
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy
| | - S Caravelli
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy.
| | - A Russo
- II Clinic of Orthopaedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - C Perisano
- Department of Ageing, Neurosciences, Head-Neck and Orthopedics Sciences, Orthopedics and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - T Greco
- Department of Ageing, Neurosciences, Head-Neck and Orthopedics Sciences, Orthopedics and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - A Baiardi
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy
| | - M Di Ponte
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy
| | - E Vocale
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy
| | - M Mosca
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy
| |
Collapse
|
6
|
Jeyaraman M, Jeyaraman N, Jayakumar T, Ramasubramanian S, Ranjan R, Jha SK, Gupta A. Efficacy of stromal vascular fraction for knee osteoarthritis: A prospective, single-centre, non-randomized study with 2 years follow-up. World J Orthop 2024; 15:457-468. [PMID: 38835682 PMCID: PMC11145973 DOI: 10.5312/wjo.v15.i5.457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 05/15/2024] Open
Abstract
BACKGROUND Current osteoarthritis (OA) treatments focus on symptom relief without addressing the underlying disease process. In regenerative medicine, current treatments have limitations. In regenerative medicine, more research is needed for intra-articular stromal vascular fraction (SVF) injections in OA, including dosage optimization, long-term efficacy, safety, comparisons with other treatments, and mechanism exploration. AIM To compare the efficacy of intra-articular SVF with corticosteroid (ICS) injections in patients with primary knee OA. METHODS The study included 50 patients with Kellgren-Lawrence grades II and III OA. Patients were randomly assigned (1:1) to receive either a single intra-articular SVF injection (group A) or a single intra-articular ICS (triamcinolone) (group B) injection. Patients were followed up at 1, 3, 6, 12, and 24 months. Visual analog score (VAS) and International Knee Documentation Committee (IKDC) scores were administered before the procedure and at all follow-ups. The safety of SVF in terms of adverse and severe adverse events was recorded. Statistical analysis was performed with SPSS Version 26.0, IBM Corp, Chicago, IL, United States. RESULTS Both groups had similar demographics and baseline clinical characteristics. Follow-up showed minor patient loss, resulting in 23 and 24 in groups A and B respectively. Group A experienced a notable reduction in pain, with VAS scores decreasing from 7.7 to 2.4 over 24 months, compared to a minor reduction from 7.8 to 6.2 in Group B. This difference in pain reduction in group A was statistically significant from the third month onwards. Additionally, Group A showed significant improvements in knee functionality, with IKDC scores rising from 33.4 to 83.10, whereas Group B saw a modest increase from 36.7 to 45.16. The improvement in Group A was statistically significant from 6 months and maintained through 24 months. CONCLUSION Our study demonstrated that intra-articular administration of SVF can lead to reduced pain and improved knee function in patients with primary knee OA. More adequately powered, multi-center, double-blinded, randomised clinical trials with longer follow-ups are needed to further establish safety and justify its clinical use.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
- Department of Orthopaedics and Regenerative Medicine, South Texas Orthopaedic Research Institute, Laredo, TX 78045, United States
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077, India
| | - Tarun Jayakumar
- Department of Orthopaedics, KIMS-Sunshine Hospital, Hyderabad, Telangana 500032, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu 600002, India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
- Department of Zoology, Kalindi College, University of Delhi, New Delhi 110008, India
| | - Ashim Gupta
- Department of Orthopaedics and Regenerative Medicine, South Texas Orthopaedic Research Institute, Laredo, TX 78045, United States
- Department of Orthopaedics and Regenerative Medicine, Regenerative Orthopaedics, Noida 201301, Uttar Pradesh, India
- Department of Orthopaedics and Regenerative Medicine, Future Biologics, Lawrenceville, GA 30043, United States
- Department of Orthopaedics and Regenerative Medicine, BioIntegrate, Lawrenceville, GA 30043, United States
| |
Collapse
|
7
|
Holzbauer M, Priglinger E, Kølle SFT, Prantl L, Stadler C, Winkler PW, Gotterbarm T, Duscher D. Intra-Articular Application of Autologous, Fat-Derived Orthobiologics in the Treatment of Knee Osteoarthritis: A Systematic Review. Cells 2024; 13:750. [PMID: 38727286 PMCID: PMC11083621 DOI: 10.3390/cells13090750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this study was to review the current literature regarding the effects of intra-articularly applied, fat-derived orthobiologics (FDO) in the treatment of primary knee osteoarthritis over a mid-term follow-up period. A systematic literature search was conducted on the online databases of Scopus, PubMed, Ovid MEDLINE, and Cochrane Library. Studies investigating intra-articularly applied FDO with a minimum number of 10 knee osteoarthritis patients, a follow-up period of at least 2 years, and at least 1 reported functional parameter (pain level or Patient-Reported Outcome Measures) were included. Exclusion criteria encompassed focal chondral defects and techniques including additional arthroscopic bone marrow stimulation. In 28 of 29 studies, FDO showed a subjective improvement in symptoms (pain and Patient-Reported Outcome Measures) up to a maximum follow-up of 7.2 years. Radiographic cartilage regeneration up to 3 years postoperatively, as well as macroscopic cartilage regeneration investigated via second-look arthroscopy, may corroborate the favorable clinical findings in patients with knee osteoarthritis. The methodological heterogeneity in FDO treatments leads to variations in cell composition and represents a limitation in the current state of knowledge. However, this systematic review suggests that FDO injection leads to beneficial mid-term results including symptom reduction and preservation of the affected joint in knee osteoarthritis patients.
Collapse
Affiliation(s)
- Matthias Holzbauer
- Department for Orthopedics and Trauma Surgery, Med Campus III, Kepler University Hospital, Krankenhausstrasse 9, 4020 Linz, Austria; (E.P.); (C.S.); (P.W.W.); (T.G.)
- Faculty of Medicine, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Eleni Priglinger
- Department for Orthopedics and Trauma Surgery, Med Campus III, Kepler University Hospital, Krankenhausstrasse 9, 4020 Linz, Austria; (E.P.); (C.S.); (P.W.W.); (T.G.)
- Faculty of Medicine, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | | | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (L.P.); (D.D.)
| | - Christian Stadler
- Department for Orthopedics and Trauma Surgery, Med Campus III, Kepler University Hospital, Krankenhausstrasse 9, 4020 Linz, Austria; (E.P.); (C.S.); (P.W.W.); (T.G.)
- Faculty of Medicine, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Philipp Wilhelm Winkler
- Department for Orthopedics and Trauma Surgery, Med Campus III, Kepler University Hospital, Krankenhausstrasse 9, 4020 Linz, Austria; (E.P.); (C.S.); (P.W.W.); (T.G.)
- Faculty of Medicine, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Tobias Gotterbarm
- Department for Orthopedics and Trauma Surgery, Med Campus III, Kepler University Hospital, Krankenhausstrasse 9, 4020 Linz, Austria; (E.P.); (C.S.); (P.W.W.); (T.G.)
- Faculty of Medicine, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Dominik Duscher
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (L.P.); (D.D.)
- TF Plastic Surgery and Longevity Center, Herzogstrasse 67, 80803 Munich, Germany and Dorotheergasse 12, 1010 Vienna, Austria
| |
Collapse
|
8
|
Vernice NA, Dong X, Matavosian AA, Corpuz GS, Shin J, Bonassar LJ, Spector JA. Bioengineering Full-scale auricles using 3D-printed external scaffolds and decellularized cartilage xenograft. Acta Biomater 2024; 179:121-129. [PMID: 38494083 DOI: 10.1016/j.actbio.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Reconstruction of the human auricle remains a formidable challenge for plastic surgeons. Autologous costal cartilage grafts and alloplastic implants are technically challenging, and aesthetic and/or tactile outcomes are frequently suboptimal. Using a small animal "bioreactor", we have bioengineered full-scale ears utilizing decellularized cartilage xenograft placed within a 3D-printed external auricular scaffold that mimics the size, shape, and biomechanical properties of the native human auricle. The full-scale polylactic acid ear scaffolds were 3D-printed based upon data acquired from 3D photogrammetry of an adult ear. Ovine costal cartilage was processed either through mincing (1 mm3) or zesting (< 0.5 mm3), and then fully decellularized and sterilized. At explantation, both the minced and zested neoears maintained the size and contour complexities of the scaffold topography with steady tissue ingrowth through 6 months in vivo. A mild inflammatory infiltrate at 3 months was replaced by homogenous fibrovascular tissue ingrowth enveloping individual cartilage pieces at 6 months. All ear constructs were pliable, and the elasticity was confirmed by biomechanical analysis. Longer-term studies of the neoears with faster degrading biomaterials will be warranted for future clinical application. STATEMENT OF SIGNIFICANCE: Accurate reconstruction of the human auricle has always been a formidable challenge to plastic surgeons. In this article, we have bioengineered full-scale ears utilizing decellularized cartilage xenograft placed within a 3D-printed external auricular scaffold that mimic the size, shape, and biomechanical properties of the native human auricle. Longer-term studies of the neoears with faster degrading biomaterials will be warranted for future clinical application.
Collapse
Affiliation(s)
- Nicholas A Vernice
- Laboratory of Bioregenerative Medicine & Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Xue Dong
- Laboratory of Bioregenerative Medicine & Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Alicia A Matavosian
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - George S Corpuz
- Laboratory of Bioregenerative Medicine & Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, USA
| | - James Shin
- Department of Radiology, Well Cornell Medicine, New York, NY, USA
| | - Lawrence J Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jason A Spector
- Laboratory of Bioregenerative Medicine & Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, USA; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Xu J, Zhao Y. Effect of high-density fat combined with adipose stem cell glue on the success rate of facial filling and its clinical value. J Plast Surg Hand Surg 2024; 59:32-39. [PMID: 38481120 DOI: 10.2340/jphs.v59.18683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/08/2024] [Indexed: 03/26/2024]
Abstract
Facial fat grafting is a popular cosmetic procedure, and experts are increasingly endorsing the use of high-density fat with adipose stem cell glue for better results. This study aims to explore the effect of high-density fat combined with adipose stem cell glue on the success rate of facial filling and its clinical value. We conducted a randomized trial with 100 patients who underwent facial fat transplantation between August 2020 and August 2022. They were divided into two groups: a control group receiving traditional Coleman fat transplantation and an observation group receiving high-density fat with adipose stem cells. In the observation and control groups, the excellent and good rate was 98.00 and 80.00%. After 3 months of treatment, the thickness of frontal subcutaneous fat and temporal subcutaneous fat in the observation group was higher (P < 0.05). Observation group retention of fat transplantation was noticeably higher 3 months after treatment (P < 0.05). Three months after treatment, the VISIA (facial imaging system) scores of facial color spots, facial pores and facial wrinkles in the observation group were lower (P < 0.05). After treatment, both groups indicated noticeable improvements in physiological functions, health status, social function, mental health, and somatic diseases compared to before treatment. Notably, the observation group had higher scores (P < 0.05). The observation group had a lower complication rate (4.00% vs. 22.00%) and higher satisfaction rate (98.00% vs. 86.00%) than the control group. Using high-density fat combined with adipose stem cell glue for facial fat grafting yields superior results, reduces complications, and boosts patient satisfaction compared to traditional methods. We have complied with all relevant ethical regulations with regard to the use of stem cells.
Collapse
Affiliation(s)
- Junsheng Xu
- Hefei BOE Hospital, Hefei City, Anhui Province, China
| | - Yu Zhao
- The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| |
Collapse
|
10
|
Ali HA, Hadi HA. Can the Autogenous Nanofat Injection Improve the Symptoms of Patients With Temporomandibular Joint Internal Derangement? A Prospective Observational Clinical Study. J Craniofac Surg 2024; 35:519-523. [PMID: 37955518 DOI: 10.1097/scs.0000000000009820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 11/14/2023] Open
Abstract
Since nanofat is considered one of the richest sources of adipose-derived stem cells with an increased need for new biological approaches for managing temporomandibular joint internal derangement (TMJ-ID) symptoms that impair a patient's lifestyle, this study evaluated the effectiveness of autogenous nanofat intra-articular injection in managing ID symptoms regarding pain, mouth opening, and joint sound. Furthermore, to assess the consequences and complications of this procedure, 20 patients with 38 TMJs with varying stages of Wilkes classification were included in the study. All involved patients were previously diagnosed with ID depending on a clinical and radiographical basis and had no previous response to conservative management for at least 4 to 6 months. Evaluation of the ID in the preoperative phase, as well as 2 weeks, 1 month, 3 months, and 6 months postoperatively. An evaluation was done depending on pain assessment using a visual analog scale (VAS), measuring maximum mouth opening (MMO) and joint noise if it was present or absent preoperatively and postoperatively. The results show improvement in the symptoms in all follow-up appointments since the VAS of pain decreased significantly with increased MMO and the absence of clicking in most cases during follow-up appointments. We conclude from this study that nanofat intra-articular injection was influential in managing ID symptoms and was safe without significant side effects.
Collapse
Affiliation(s)
- Huda Akram Ali
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
11
|
Farid MF, Yasin NAE, Al-Mokaddem AK, Ibrahim MA, Abouelela YS, Rizk H. Combined laser-activated SVF and PRP remodeled spinal sclerosis via activation of Olig-2, MBP, and neurotrophic factors and inhibition of BAX and GFAP. Sci Rep 2024; 14:3096. [PMID: 38326395 PMCID: PMC10850074 DOI: 10.1038/s41598-024-52962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
A single injection of platelet-rich plasma (PRP) or stromal vascular fraction (SVF) in treating neurological ailments suggests promise; however, there is limited evidence of the efficacy of combination therapy. This trial aimed to determine whether combining SVF and PRP could provide further therapeutic effects in treating multiple sclerosis (MS). Fifteen Persian cats were separated into three groups (n = 5): group I (control negative), and group II (control positive); EB was injected intrathecally into the spinal cord and then treated 14 days later with intrathecal phosphate buffered saline injection, and group III (SVF + PRP), cats were injected intrathecally with EB through the spinal cord, followed by a combination of SVF and PRP 14 days after induction. Therapeutic effects were evaluated using the Basso-Beattie-Bresnahan scale throughout the treatment timeline and at the end. Together with morphological, MRI scan, immunohistochemical, transmission electron microscopy, and gene expression investigations. The results demonstrated that combining SVF and PRP successfully reduced lesion intensity on gross inspection and MRI. In addition to increased immunoreactivity to Olig2 and MBP and decreased immunoreactivity to Bax and GFAP, there was a significant improvement in BBB scores and an increase in neurotrophic factor (BDNF, NGF, and SDF) expression when compared to the positive control group. Finally, intrathecal SVF + PRP is the most promising and safe therapy for multiple sclerosis, resulting in clinical advantages such as functional recovery, MRI enhancement, and axonal remyelination.
Collapse
Affiliation(s)
- Mariam F Farid
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt.
| | - Noha A E Yasin
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Yara S Abouelela
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Hamdy Rizk
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| |
Collapse
|
12
|
Svistushkin VM, Timashev PS, Lobacheva VV, Zolotova AV, Svistushkin MV, Kosheleva NV, Shevchik EA, Nikiforova GN, Shpichka AI, Nikiforova AN, Tychkina IA. [Closing of nasal septum perforation using adipose stromal vascular fraction: an experimental study]. Vestn Otorinolaringol 2024; 89:21-27. [PMID: 38805459 DOI: 10.17116/otorino20248902121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Nasal septal perforation (NSP) is a complex problem in otorhinolaryngology, which leads to impaired nasal breathing and dryness in the nose. This reduces the patient's quality of life and leads to psychological discomfort. The treatment of nasal septum perforation is selected taking into account the clinical manifestations, perforation parameters and general condition of the patient. Currently, a large number of different surgical methods have been described in order to closing the defect of nasal septum. To date, there is no universally accepted method for closing NSP, which stimulates the search and development of new treatment options. OBJECTIVE Under experimental conditions, to study a new method for closing nasal septum perforation using a collagen scaffold together with adipose stromal vascular fraction containing multipotent mesenchymal stromal cells. MATERIAL AND METHODS The experiment was carried out on a model of nasal septum perforation in 24 male rabbits divided into four groups, depending on the construct, implanted into the defect zone: the 1st group was the control group - without the introduction of implantation material; the 2nd group - collagen scaffold without adipose stromal vascular fraction; the 3rd group - collagen scaffold with xenogenic adipose stromal vascular fraction; the 4th group - collagen scaffold with allogeneic adipose stromal vascular fraction with further dynamic evaluation of endoscopic control on day 14, after 1 month, 3 months, and 6 months. At month 6, the animals were removed from the experiment, followed by morphological examination in color with hematoxylin and eosin, as well as safranin and methyl green. RESULTS As a result of the experiment using adipose stromal vascular fraction of allogeneic and xenogenic origin, closing of perforation of the nasal septum of a rabbit for 3 months of dynamic endoscopic control, as well as according to morphological research, was demonstrated. CONCLUSION Our study showed that the use of adipose stromal vascular fraction containing not only endothelial cells and pericytes, but also multipotent mesenchymal stromal cells in combination with a collagen scaffold closes the perforation of the nasal septum in a rabbit, without increasing the risk of violations of habitual vital activity.
Collapse
Affiliation(s)
- V M Svistushkin
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - P S Timashev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - V V Lobacheva
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A V Zolotova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - M V Svistushkin
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - N V Kosheleva
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - E A Shevchik
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G N Nikiforova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A I Shpichka
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A N Nikiforova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - I A Tychkina
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
13
|
Makarczyk MJ. Cell Therapy Approaches for Articular Cartilage Regeneration. Organogenesis 2023; 19:2278235. [PMID: 37963189 PMCID: PMC10898818 DOI: 10.1080/15476278.2023.2278235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Articular cartilage is a common cartilage type found in a multitude of joints throughout the human body. However, cartilage is limited in its regenerative capacity. A range of methods have been employed to aid adults under the age of 45 with cartilage defects, but other cartilage pathologies such as osteoarthritis are limited to non-steroidal anti-inflammatory drugs and total joint arthroplasty. Cell therapies and synthetic biology can be utilized to assist not only cartilage defects but have the potential as a therapeutic approach for osteoarthritis as well. In this review, we will cover current cell therapy approaches for cartilage defect regeneration with a focus on autologous chondrocyte implantation and matrix autologous chondrocyte implantation. We will then discuss the potential of stem cells for cartilage repair in osteoarthritis and the use of synthetic biology to genetically engineer cells to promote cartilage regeneration and potentially reverse osteoarthritis.
Collapse
Affiliation(s)
- Meagan J Makarczyk
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Goncharov EN, Koval OA, Nikolaevich Bezuglov E, Encarnacion Ramirez MDJ, Engelgard M, Igorevich EI, Saporiti A, Valentinovich Kotenko K, Montemurro N. Stromal Vascular Fraction Therapy for Knee Osteoarthritis: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2090. [PMID: 38138193 PMCID: PMC10744886 DOI: 10.3390/medicina59122090] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Knee osteoarthritis (OA) is a widespread joint disease, set to increase due to aging and rising obesity. Beyond cartilage degeneration, OA involves the entire joint, including the synovial fluid, bones, and surrounding muscles. Existing treatments, such as NSAIDs and corticosteroid injections, mainly alleviate symptoms but can have complications. Joint replacement surgeries are definitive but carry surgical risks and are not suitable for all. Stromal vascular fraction (SVF) therapy is a regenerative approach using cells from a patient's adipose tissue. SVF addresses as degenerative and inflammatory aspects, with potential for cartilage formation and tissue regeneration. Unlike traditional treatments, SVF may reverse OA changes. Being autologous, it reduces immunogenic risks. Materials and Methods: A systematic search was undertaken across PubMed, Medline, and Scopus for relevant studies published from 2017 to 2023. Keywords included "SVF", "Knee Osteoarthritis", and "Regenerative Medicine". Results: This systematic search yielded a total of 172 articles. After the removal of duplicates and an initial title and abstract screening, 94 full-text articles were assessed for eligibility. Of these, 22 studies met the inclusion criteria and were subsequently included in this review. Conclusions: This review of SVF therapy for knee OA suggests its potential therapeutic benefits. Most studies confirmed its safety and efficacy, and showed improved clinical outcomes and minimal adverse events. However, differences in study designs and sizes require a careful interpretation of the results. While evidence supports SVF's positive effects, understanding methodological limitations is key. Incorporating SVF is promising, but the approach should prioritize patient safety and rigorous research.
Collapse
Affiliation(s)
| | | | | | | | - Mikhail Engelgard
- Petrovsky Russian Scientific Center of Surgery, 121359 Moscow, Russia
| | | | - Alessandra Saporiti
- Department of Pharmaceuticals, Azienda Usl Toscana Nord Ovest, 56100 Pisa, Italy
| | | | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
| |
Collapse
|
15
|
Jeong JY, Park KN, Lee SW. A Novel Intervention That Prevents Vocal Fold Scarring. J Voice 2023:S0892-1997(23)00250-3. [PMID: 37806901 DOI: 10.1016/j.jvoice.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES We evaluated the preventive efficacy of stromal vascular fraction (SVF) for vocal fold scar in a rabbit model. STUDY DESIGN Animal model. METHODS The study included 40 male New Zealand white rabbits: 20 received vocal fold scar surgery served as normal controls (control group). The other 20 received the same vocal fold scar surgery with SVF injection (SVF group) Histological and high-speed video analyses of vocal fold vibration were performed 4 weeks after scar surgery and SVF injection. The maximum amplitude of vocal fold vibration was used to assess vocal fold vibration. A real-time PCR study was also performed to evaluate the scar regeneration and remodeling including TGF-ß1, IL-6, procollagen-1, MMP-2, 9, and HAS-2, 3. RESULTS Vocal fold vibration analyses indicated that the maximum amplitude differences in the vibration of the SVF group were significantly higher than the control group. The histological findings showed that the collagen density ratio were significantly lower in the SVF group compared to the control group. Real-time Polymerase Chain Reaction (PCR) study showed significant increases of MMP-2, 9 and HAS-2, 3, and a decrease of TGF-ß1, IL-6, procollagen-1 in the SVF group compared to the control group. CONCLUSIONS Based on the vocal fold vibration study, histological findings, and real-time PCR study, SVF injection showed preventive activity and improvement of vocal fold vibration for vocal fold scar in a rabbit model.
Collapse
Affiliation(s)
- Jun-Yeong Jeong
- Department of Otolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Bucheon, South Korea
| | - Ki-Nam Park
- Department of Otolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Bucheon, South Korea
| | - Seung-Won Lee
- Department of Otolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Bucheon, South Korea.
| |
Collapse
|
16
|
Vasella M, Arnke K, Dranseikiene D, Guzzi E, Melega F, Reid G, Klein HJ, Schweizer R, Tibbitt MW, Kim BS. Methacrylated Gelatin as a Scaffold for Mechanically Isolated Stromal Vascular Fraction for Cutaneous Wound Repair. Int J Mol Sci 2023; 24:13944. [PMID: 37762247 PMCID: PMC10530931 DOI: 10.3390/ijms241813944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Mechanically processed stromal vascular fraction (mSVF) is a highly interesting cell source for regenerative purposes, including wound healing, and a practical alternative to enzymatically isolated SVF. In the clinical context, SVF benefits from scaffolds that facilitate viability and other cellular properties. In the present work, the feasibility of methacrylated gelatin (GelMA), a stiffness-tunable, light-inducible hydrogel with high biocompatibility is investigated as a scaffold for SVF in an in vitro setting. Lipoaspirates from elective surgical procedures were collected and processed to mSVF and mixed with GelMA precursor solutions. Non-encapsulated mSVF served as a control. Viability was measured over 21 days. Secreted basic fibroblast growth factor (bFGF) levels were measured on days 1, 7 and 21 by ELISA. IHC was performed to detect VEGF-A, perilipin-2, and CD73 expression on days 7 and 21. The impact of GelMA-mSVF on human dermal fibroblasts was measured in a co-culture assay by the same viability assay. The viability of cultured GelMA-mSVF was significantly higher after 21 days (p < 0.01) when compared to mSVF alone. Also, GelMA-mSVF secreted stable levels of bFGF over 21 days. While VEGF-A was primarily expressed on day 21, perilipin-2 and CD73-positive cells were observed on days 7 and 21. Finally, GelMA-mSVF significantly improved fibroblast viability as compared with GelMA alone (p < 0.01). GelMA may be a promising scaffold for mSVF as it maintains cell viability and proliferation with the release of growth factors while facilitating adipogenic differentiation, stromal cell marker expression and fibroblast proliferation.
Collapse
Affiliation(s)
- Mauro Vasella
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (M.V.); (G.R.)
| | - Kevin Arnke
- Center for Preclinical Development, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Dalia Dranseikiene
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; (D.D.); (E.G.); (M.W.T.)
| | - Elia Guzzi
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; (D.D.); (E.G.); (M.W.T.)
| | - Francesca Melega
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Gregory Reid
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (M.V.); (G.R.)
| | - Holger Jan Klein
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, 5001 Aarau, Switzerland;
| | - Riccardo Schweizer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Regional Hospital Lugano, 6900 Lugano, Switzerland;
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; (D.D.); (E.G.); (M.W.T.)
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (M.V.); (G.R.)
| |
Collapse
|
17
|
Kun-Varga A, Gubán B, Miklós V, Parvaneh S, Guba M, Szűcs D, Monostori T, Varga J, Varga Á, Rázga Z, Bata-Csörgő Z, Kemény L, Megyeri K, Veréb Z. Herpes Simplex Virus Infection Alters the Immunological Properties of Adipose-Tissue-Derived Mesenchymal-Stem Cells. Int J Mol Sci 2023; 24:11989. [PMID: 37569367 PMCID: PMC10418794 DOI: 10.3390/ijms241511989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2023] Open
Abstract
The proper functioning of mesenchymal stem cells (MSCs) is of paramount importance for the homeostasis of the body. Inflammation and infection can alter the function of MSCs, which can also affect the regenerative potential and immunological status of tissues. It is not known whether human herpes simplex viruses 1 and 2 (HSV1 and HSV2), well-known human pathogens that can cause lifelong infections, can induce changes in MSCs. In non-healing ulcers, HSV infection is known to affect deeper tissue layers. In addition, HSV infection can recur after initially successful cell therapies. Our aim was to study the response of adipose-derived MSCs (ADMSCs) to HSV infection in vitro. After confirming the phenotype and differentiation capacity of the isolated cells, we infected the cells in vitro with HSV1-KOS, HSV1-532 and HSV2 virus strains. Twenty-four hours after infection, we examined the gene expression of the cells via RNA-seq and RT-PCR; detected secreted cytokines via protein array; and determined autophagy via Western blot, transmission electron microscopy (TEM) and fluorescence microscopy. Infection with different HSV strains resulted in different gene-expression patterns. In addition to the activation of pathways characteristic of viral infections, distinct non-immunological pathways (autophagy, tissue regeneration and differentiation) were also activated according to analyses with QIAGEN Ingenuity Pathway Analysis, Kyoto Encyclopedia of Genes and Genome and Genome Ontology Enrichment. Viral infections increased autophagy, as confirmed via TEM image analysis, and also increased levels of the microtubule-associated protein light chain 3 (LC3B) II protein. We identified significantly altered accumulation for 16 cytokines involved in tissue regeneration and inflammation. Our studies demonstrated that HSV infection can alter the viability and immunological status of ADMSCs, which may have implications for ADMSC-based cell therapies. Alterations in autophagy can affect numerous processes in MSCs, including the inhibition of tissue regeneration as well as pathological differentiation.
Collapse
Affiliation(s)
- Anikó Kun-Varga
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Barbara Gubán
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
| | - Vanda Miklós
- Biobank, University of Szeged, H-6720 Szeged, Hungary;
| | - Shahram Parvaneh
- HCEMM-SZTE Skin Research Group, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (Z.B.-C.)
| | - Melinda Guba
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Diána Szűcs
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Monostori
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - János Varga
- Dermatosurgery and Plastic Surgery Unit, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (J.V.); (Á.V.)
| | - Ákos Varga
- Dermatosurgery and Plastic Surgery Unit, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (J.V.); (Á.V.)
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, H-6720 Szeged, Hungary;
| | - Zsuzsanna Bata-Csörgő
- HCEMM-SZTE Skin Research Group, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (Z.B.-C.)
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- HCEMM-SZTE Skin Research Group, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (Z.B.-C.)
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Klára Megyeri
- Department of Medical Microbiology, University of Szeged, H-6720 Szeged, Hungary;
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (A.K.-V.); (B.G.); (M.G.); (D.S.); (T.M.); (L.K.)
- Biobank, University of Szeged, H-6720 Szeged, Hungary;
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
18
|
Romano IR, D'Angeli F, Vicario N, Russo C, Genovese C, Lo Furno D, Mannino G, Tamburino S, Parenti R, Giuffrida R. Adipose-Derived Mesenchymal Stromal Cells: A Tool for Bone and Cartilage Repair. Biomedicines 2023; 11:1781. [PMID: 37509421 PMCID: PMC10376676 DOI: 10.3390/biomedicines11071781] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The osteogenic and chondrogenic differentiation ability of adipose-derived mesenchymal stromal cells (ASCs) and their potential therapeutic applications in bone and cartilage defects are reported in this review. This becomes particularly important when these disorders can only be poorly treated by conventional therapeutic approaches, and tissue engineering may represent a valuable alternative. Being of mesodermal origin, ASCs can be easily induced to differentiate into chondrocyte-like and osteocyte-like elements and used to repair damaged tissues. Moreover, they can be easily harvested and used for autologous implantation. A plethora of ASC-based strategies are being developed worldwide: they include the transplantation of freshly harvested cells, in vitro expanded cells or predifferentiated cells. Moreover, improving their positive effects, ASCs can be implanted in combination with several types of scaffolds that ensure the correct cell positioning; support cell viability, proliferation and migration; and may contribute to their osteogenic or chondrogenic differentiation. Examples of these strategies are described here, showing the enormous therapeutic potential of ASCs in this field. For safety and regulatory issues, most investigations are still at the experimental stage and carried out in vitro and in animal models. Clinical applications have, however, been reported with promising results and no serious adverse effects.
Collapse
Affiliation(s)
- Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D'Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Carlo Genovese
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Serena Tamburino
- Chi.Pla Chirurgia Plastica, Via Suor Maria Mazzarello, 54, 95128 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|